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This paper offers a joint estimation approach for forecasting probabilities of default and loss rates
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An empirical analysis identifies bond ratings, borrower characteristics and macroeconomic information
as important risk factors. A portfolio-level analysis finds evidence that common risk measurement
approaches may underestimate bank capital by up to 17% relative to the presented model.
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1. Introduction

Financial institutions were surprised that during the

financial crisis, individual risk parameters deteriorated

jointly. As a result, credit portfolio losses dramatically

exceeded the predictions provided by internal risk models.

Measuring credit portfolio losses is of great concern to

fixed income investors. A large growth of investments in

credit portfolios rather than single name credits has

occurred through securitizations. The evaluation of credit

portfolio risks requires the understanding of individual risk

drivers as well as their dependence structure.

Credit portfolio risk is measured by various parameters

such as default probabilities, loss rates given default,

exposures at default and dependence parameters such as

correlations and more general copulas. It is common

practice to model these parameters independently and to

introduce the dependence structure thereafter. This prac-

tice is supported by the implementation of isolated models

provided by external vendors.

Various authors address the default likelihood. Impor-

tant contributions are Merton (1974), Leland (1994),

Jarrow and Turnbull (1995), Longstaff and Schwartz

(1995), Madan and Unal (1995), Leland and Toft (1996),

Jarrow et al (1997), Duffie and Singleton (1999), Gordy

(2000, 2001), Shumway (2001), McNeil and Wendin (2007)

and Duffie et al (2007).

Credit ratings are often used as aggregated explanations

of financial risk. Ratings measure the financial risk of

corporate bond issuers, corporate bond issues and

structured finance securities. Fundamental issues relating

to the general extent to which credit rating changes convey

new information has a rich pedigree that is the subject of

ongoing academic debate and investigation. For example,

Radelet and Sachs (1998) find that rating changes are

pro-cyclical which would suggest that they provide only

a limited amount of new information to the market.

Ederington and Goh (1993), Dichev and Piotroski (2001)

and Purda (2007) find that corporate credit rating down-

grades do provide news to the market, although most

studies find that rating upgrades do not. Jorion et al (2005)

show that after Regulation Fair Disclosure, the market

impact of both downgrades and upgrades is significant and

of greater magnitude compared to that observed in the

pre-Regulation Fair Disclosure period. The relative roles of

different CRAs have also been studied. For example,

Morgan (2002) examine the effect of divergent Moody’s

and S&P ratings of banks.

Research on recoveries and loss rates given default

(LGD) are quite recent. Pan and Singleton (2008) derive

the implicit risk structure of recoveries from sovereign

CDS spreads. Contributions which focus on recoveries

from defaulted issuers include Carey (1998) and Pykhtin

(2003). Empirical models for recoveries using explanatory

co-variables which are economically motivated are pro-

vided by Dermine and Neto de Carvalho (2006), Acharya

et al (2007), Qi and Yang (2009) and Grunert and Weber

(2009). Most of the empirical results in the recent literature

are based on common linear regression models analysing

credit defaults.

Few exceptions exist: Pykhtin (2003) who accounts for

this mortality bias and derives closed-form expressions for

the Expected Loss and the Value-at-Risk. However, the
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paper does not provide an empirical solution for parameter

estimation. Crook and Belotti (2011) estimate LGDmodels

based on accounting information and macroeconomic

information for credit card loans and compare OLS

models with Tobit and decision tree models. Thomas

et al (2012) and Matuszyk et al (2010) focus on the decision

tree for a borrower’s default.

Research on dependencies between risk parameters can

be split into two categories. Firstly, dependencies between

default events and asset value returns are modelled. Dietsch

and Petey (2004) present a non-parametric approach and

McNeil and Wendin (2007) apply a generalized mixed

model approach using Maximum-Likelihood. Kiefer (2011)

proposes Bayesian approaches for modelling correlated

default events and infers regulatory capital. Boeker et al

(2010) apply Bayesian approaches in conjunction with

Markov-Chain-Monte-Carlo methods to model economic

capital. Crook and Belotti (2012) provide evidence on asset

correlations for credit card defaults. Secondly, Hu and

Perraudin (2002), Tasche (2004), Miu and Ozdemir (2006)

and Altman et al (2005) derive dependencies between

default events and loss rates given default.

This paper extends the previous literature in various

ways. Firstly, the paper develops a joint model for esti-

mating and forecasting probabilities of default, recovery

rates given default as well as asset correlations. The model

explicitly takes into account that loss rates given default or

recoveries can generally be observed after the occurrence of

a default event and are censored otherwise. The sample of

recoveries is therefore not representative of the population

and is selected on the basis of observed losses or recoveries.

Formulae for the unconditional and conditional prob-

ability of default, recovery rate given default, expected loss

are developed. Conditional values are of greatest impor-

tance for credit risk modellers to comply with current

modelling standards such as Basel II and Basel III, which

require the specification of risk measures for economic

downturns.

Secondly, this paper proposes an econometric esti-

mation method for historic recovery rates. Under the

censoring model simple estimators (from common linear

OLS regression models) are inconsistent and we suggest an

estimation method which yields consistent estimators.

Thirdly, the fixed effect model is extended by including

a time-varying random effect, that is, unobservable

systematic factors. The combined models include fixed

effects given by explanatory control variables as well as

random effects. The sensitivities of these random effects

can be transformed into asset correlations which are a

central parameter in Basel II and Basel III.

Fourthly, the models are applied to corporate bond

issuers. The dynamics of recovery implied asset return

volatilities, correlations and their determinants are ana-

lysed. Credit ratings have been highly criticized in the

financial crisis due to their failure to predict corporate

credit default risk. Using consistent estimators, the

information content of credit ratings and their fore-

casting ability is augmented by additional bond issue and

issuer characteristics as well as a macroeconomic variable.

A portfolio-level analysis finds evidence that common risk

measurement approaches may underestimate bank capital

by up to 17% relative to the presented model.

The rest of the paper proceeds as follows. Section 2

defines a structural default process based on an obligor’s

asset value and an empirical version of the model. The

model is extended to asset return correlations. Section 3

describes the data and presents the empirical results.

In Section 4, the resulting Basel II capital is compared to

a model with deterministic recoveries and the best

practice US industry approach. Closed-end formulas for

the Expected Loss, Value-at-Risk and Downturn Loss

Given Default are presented. Section 5 concludes with

a summary and a discussion of the model and the

findings.

2. The basic models

2.1. Asset value dynamics and likelihood of a credit
default

We derive the default probability and the recovery rate

in an asset value model. Let V denote the value of a

firm’s assets as in Merton (1974). V is assumed to follow

a stochastic process which can be described by

dV ¼ d � V � dtþ s � V � dW; ð1Þ

where dAR is an exogenous parameter and s4 0 is an

exogenous volatility parameter, dt represents the passage

of time and dW is a Brownian motion. The change in

the logarithmic firm value ln V between time 0 and T for

given value v(0) of the firm at time 0 can be written as

SðTÞ ¼ ln VðTÞ � ln vð0Þ ¼ ðd� 0:5s2ÞT þ s
ffiffiffiffi
T
p
� e ð2Þ

where e is a standard normally distributed random

variable.

The firm is assumed to be financed by debt and equity.

Debt consists of a zero coupon bond with notional k

and maturity T. At maturity, the bondholders receive the

lower of a payment k and the value of the firm’s assets.

In the case V(T)ok, the bond issue defaults and the

bondholders receive a fraction of the notional which is

also known as recovery. The default indicator is denoted

by the random variable

D ¼ 1; credit default
0; otherwise

�
ð3Þ
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Hence, the probability of default is

l ¼ P D ¼ 1jvð0Þð Þ ¼ P VðTÞokjvð0Þð Þ
¼ P SðTÞolnk� ln vð0Þð Þ

¼ P RðTÞo
ln k

vð0Þ � ðd� 0:5s2Þ � T
s �

ffiffiffiffi
T
p

 !
¼ F �dðTÞð Þ ð4Þ

where F ( � ) is the standard normal cumulative den-

sity function, RðTÞ ¼ SðTÞ � ðd� 0:5s2Þ � T = s �
ffiffiffiffi
T
p� ���

is the normalized asset return and dðTÞ ¼ �
�
ln k

vð0Þ �

ðd� 0:5s2Þ � T
�
=ðs �

ffiffiffiffi
T
p
Þ is the normalized default thresh-

old which is also known as Distance-to-Default.

2.2. Severity of a bond default

In this setting, the repayment ratio RR is the minimum of

the asset value to debt ratio and one

RR ¼ min
VðTÞ
k

; 1

� �
ð5Þ

Defining the default point c by

c ¼ ln k� ln v0 ð6Þ
gives the transformation

lnRR ¼ minflnVðTÞ � lnk; 0g
¼ minflnVðTÞ � ln vð0Þ � lnk� ln vð0Þð Þ; 0g
¼ minfSðTÞ � c; 0g ð7Þ

Equation (7) shows that the natural logarithm (log) of the

repayment ratio is normally distributed but censored

at zero with non-zero values if a default event occurs.

2.3. The empirical factor model

The subscript i is introduced for the respective borrower

and the number of borrowers is denoted by n. A time-

horizon of one year is considered. Thus, the transformed

log-repayment ratio can be written as

lnRRi ¼ minfSið1Þ � ci; 0g ð8Þ
i¼ l, . . . , n. This representation assumes that the observed

variables Yi, that is, the log-repayment ratios, satisfy

Yi ¼ lnRRi ¼ minfY�i ; 0g ð9Þ
see Tobin (1958). Y� is a latent variable generated by a

classical regression model

Y�i ¼ b0xi þ s �Ui ð10Þ
where b represents a vector of parameters, xi a vector of

covariates, which may include an intercept, and Ui a

random error. Note that yio 0 implies an obligor default

event. The errors are assumed to be independent and

identically standard normally distributed.

Some useful model properties can be obtained following

Maddala (1983). The conditional density of the log-

repayment ratio, that is, the density of the log-recovery

rate given default is

hðyijYio0; xiÞ ¼
f �ðyi � b0xiÞ=sð Þ
s � 1� Fðb0xi=sÞð Þ ð11Þ

for yio0, where f( � ) is the density function of the standard

normal distribution. A closed-form expression for the

conditional expectation of the log-recoveries Yi given xi
and Yio0 can be derived as

EðYijYio0; xiÞ ¼
1

1� Fðb0xi=sÞ

Z0
�1

z f ðzÞdz

¼ b0xi � s
fðb0xi=sÞ

1� Fðb0xi=sÞ
ð12Þ

where f ( � ) is the density of a normally distributed random

variable with mean b0xi and variance s2. Note that the

probability of default is

PDi ¼ PðDi ¼ 1jxiÞ ¼ 1� Fðb0xi=sÞ ð13Þ

The standardized linear predictor b0xi/s is also known as

the Distance-to-Default. Note that PDi relates to the

econometric model while l relates to the theoretical asset

value model.

Figure 1 shows a graphical interpretation of the relation

between the linear predictor b0xi, the probability of default

(PD), and the volatility s. Equation (13) shows that the PD

P
D
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Figure 1 Relation between linear predictor b0x, volatility s, and
probability of default (PD).
Notes: This figure shows the relation between the linear pre-
dictor b0xi, the probability of default (PD), and the volatility s.
Probabilities of default are calculated based on s and b0x
according to Equation (13). PD is a non-linear decreasing
function of the linear predictor and a non-linear increasing
(decreasing) function of the volatility for low (high) linear
predictors. For high s, the relationship between b0x and PD
is linear and for low s, a firm defaults with a high likelihood
(ie, the PD is high) if b0xo 0 and a firm does not default with a
high likelihood (ie, the PD is low) if b0xo 0.
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is a non-linear decreasing function of the linear predictor

and a non-linear increasing (decreasing) function of the

volatility for low (high) linear predictors.

The conditional expectation of Yi given xi is

EðYijxiÞ ¼ ðb0xiÞ 1� Fðb0xi=sÞð Þ � sfðb0xi=sÞ ð14Þ

which is simply (12) times (13). Equations (12) and (14)

have important consequences for the estimation of

determinants for the recoveries using regression models.

In both instances, the expectation of Yi does not equal the

linear predictor b0xi. Thus, the estimates for b are biased

and inconsistent if they are (i) estimated using non-zero

observations of the Yi (ie, using the recoveries of defaulted

borrowers), or (ii) by treating the values of Yi which are

zero as regular dependent variables as in common linear

regression models, see Goldberger (1972), Hausman and

Wise (1977), Greene (1981), Bierens (2004).

The conditional variance of Yi is given by

VðYijYio0; xiÞ ¼ s2 � s2 � �b0xi=sþ
fðb0xi=sÞ

1� Fðb0xi=sÞ

	 

� fðb0xi=sÞ

1� Fðb0xi=sÞ
¼ s2 1� DðCÞð Þ ð15Þ

where DðCÞ ¼ ½lðCÞ �C� lðCÞ which is between 0 and 1,

lðCÞ ¼ fðCÞ
1�FðCÞ is the inverse Mills ratio, and C¼b0xi/s � 1

Finally, the expectation of the recovery rate given the

firm’s default is derived. First, we define the recovery rate

given default as

RGDi ¼ exp½Y�i � ð16Þ

that is, it is defined only if the borrower defaults. Then, the

expected recovery rate given default is

ERGDi ¼ EðRGDiÞ ¼ EðRRijDi ¼ 1; xiÞ

¼
Z0
�1

expðyiÞ � hðyijYio0; xiÞdyi

¼
Z0
�1

expðyiÞ �
f �ðyi � b0xiÞ=sð Þ
s � 1� Fðb0xi=sÞð Þdyi

¼ 1

1� Fðb0xi=sÞ
� expðb0xi þ 0:5s2Þ

�F � b0xi þ s2

s

	 

ð17Þ

The derivation of the third equation is given in the

Appendix. The expected loss rate given default (ELGD) is

then defined as

ELGDi ¼ 1� EðRRijDi ¼ 1;xiÞ ¼ 1� ERGDi ð18Þ

Figure 2 shows the relation between PD, expected loss

rate given default (ELGD), and the volatility s. Given the

volatility, the relationship between PD and ELGD is

monotone: ELGD increases with the PD. The slope of the

PD-ELGD curve depends on the volatility resulting in an

approximately linear relation for higher values of the

volatility. In other words, the positive correlation between

the likelihood and severity of credit risk is driven by the

random asset value and therefore embedded in the causal

model. Note that actual defaults and recoveries (or losses)

given default are realizations of random variables in

Equations (3) and (16) and will take on values different

from their expectations shown in Figure 2.

The Tobit model parameters are estimated conditional

on default using the Maximum-Likelihood method. The

probability that obligor i has not defaulted conditional on

xi is

1� PDi ¼ Fðb0xi=sÞ ð19Þ

The density of the log-recovery is

hðyijxiÞ � ð1� Fðb0xi=sÞÞ ¼
f �ðyi � b0xiÞ=sð Þ

s
ð20Þ

and therefore the likelihood for an observed pattern of

non-defaults and log-recoveries is

L ¼
Y

i2fyi¼0g
Fðb0xi=sÞð Þ �

Y
i2fyio0g

f �ðyi � b0xiÞ=sð Þ
s

	 

ð21Þ

1
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0.4E
L

G
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sigma=1 sigma=2 sigma=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2 Relation between probability of default (PD),
expected loss given default (ELGD), and volatility s.
Notes: This figure shows the relation between PD, expected loss
rate given default (ELGD), and the volatility s. Given the
volatility, the relationship between PD and ELGD is monotone:
ELGD increases with the PD. The slope of the PD-ELGD curve
depends on the volatility resulting in an approximately linear
relation for higher values of the volatility. ELGD is calculated
based on PD and s according to Equations (17) and (18).

1We thank an anonymous referee for pointing this out.
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It may be more convenient to calculate the log-likelihood

‘ ¼
X

i2fyi¼0g
ln Fðb0xi=sÞð Þ þ

X
i2fyio0g

ln
f �ðyi � b0xiÞ=sð Þ

s

	 

ð22Þ

which is then maximized with regard to the parameters b

and s. The estimator is consistent and asymptotically

normal, see Amemiya (1973), Davidson and MacKinnon

(1993).

2.4. Extension of the model to asset return correlations

The framework which has been presented thus far

incorporates the residual volatilities but does not take into

account that the firms’ asset returns may be cross-

sectionally correlated. Correlations are an important input

into modern credit portfolio risk models. Small changes of

the correlation between asset returns may have a high

impact on the portfolio loss distribution and related

measures.

The random error Ui of Equation (10) is decomposed

into

Ui ¼ o � F þ ~s � Vi ð23Þ

where F is a systematic error component which simulta-

neously affects all assets (which is also known as a

systematic random effect), and Vi is an idiosyncratic error

affecting only asset i, i¼ l, . . . , n. All errors are standard

normally distributed and independent from each other,

o and ~s are parameters which express the exposure to the

systematic and idiosyncratic factors. Note that the total

variance is VðUiÞ ¼ s2 ¼ o2 þ ~s2: Thus, the correlation

between two latent variables Yi
� and Yj

�of asset i and j is

given by

r ¼
CðY�i ;Y�j Þ

s � s ¼ o2

s2
¼ o2

o2 þ ~s2
ð24Þ

where Cð�Þ denotes the covariance. This parameter plays a

crucial role in most commercial credit risk models as well

as Basel II which will be discussed in Section 4.

The latent variable Yi
� extends to

Y�i ¼ b0xi þ o � F þ ~s � Vi ð25Þ

F is an annual realization and o can be estimated using the

econometric specification

Y�it ¼ b0xit þ o � Ft þ ~s � Vit ð26Þ

where iAnt, t¼ 1, . . . ,T. T is the number of time series

observations available (eg, the number of years) and nt is

the set of borrowers in period t. Given this notation the

parameters can be estimated by the Maximum-Likelihood

method as shown below.

Consider a given realization of the systematic factor

Ft¼ ft. Conditional on ft the Likelihood for each period is

Lt ¼
Y

i2fyit¼0g
F ðb0xit þ o � ftÞ=~sð Þð Þ

�
Y

i2fyito0g

f �ðyit � b0xit � o � ftÞ=~sð Þ
~s

	 

ð27Þ

Note that ft is not observable and that the expectation

is calculated with respect to Ft

EðLtÞ ¼
Z1
�1

Y
i2fyit¼0g

F ðb0xit þ o � ftÞ=~sð Þð Þ ð28Þ

�
Y

i2fyito0g

f �ðyit � b0xit � o � ftÞ=~sð Þ
~s

	 

fð ftÞdft ð29Þ

Finally, using a time series of T observations, the Log-

Likelihood is

‘ ¼ lnL¼ In
YT
t¼1

EðLtÞ
 !

¼
XT
t¼1

ln EððLtÞ ð30Þ

which is then maximized with regard to the parameters b,
o and ~s: This operation can be solved numerically using

Adaptive Gaussian Quadrature (see Pinheiro and Bates,

1995; Rabe-Hesketh et al, 2002).2

3. Empirical study

3.1. Data

The empirical analysis is based on recoveries provided by

the rating agency Moody’s.3 Moody’s measures the

recovery of a bond issue upon occurrence of a default

event, that is, if

K Interest and/or principal payments are missed or

delayed,

2A simulation study was conducted to ensure the consistency of the

estimators.
3Moody’s collects general information on bond issuer and issues as

well as default and market price information given default events. Note

that the only information this paper uses which is uniquely generated by

Moody’s is the credit rating. This credit rating is very similar to the ones

published by other rating agencies such as Standard & Poor’s and Fitch:

we have hand-collected from the Bloomberg database 63 151 ratings at

origination which were rated byMoody’s and Standard & Poor’s, 38 346

bond ratings at origination which were rated by Moody’s and Fitch and

34578 bond ratings at origination which were rated by Standard &

Poor’s and Fitch. The Spearman correlation coefficient is 0.9819 for

Moody’s and Standard and Poor’s, 0.9738 for Moody’s and Fitch and

0.9702 for Standard and Poor’s and Fitch. This analysis of these rating

pairs suggests that credit ratings are similar for the three rating agencies

as the correlation coefficients are very high. These findings are consistent

with Guettler and Wahrenburg (2007) as well as interviews with

employees of the three agencies.

D Rösch and H Scheule—Forecasting probabilities of default and loss rates given default 5
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K Chapter 11 or Chapter 7 bankruptcy is filed, or

K Distressed exchange such as a reduction of the financial

obligation occurs.

In order to guarantee a homogeneous risk segment, the

data set was restricted to regular US bond issues. The

observation period includes the years 1982–2009. This data

set includes 473 951 observations with 1653 default and

recovery events. A recovery rate is defined as the ratio of

the price of defaulted debt obligations after 30 days of

the occurrence of a default event and the par value.

Table 1 shows the number of observations, default rate

and mean recovery per year.

Figure 3 shows that the ratio of non-investment grade

issues to total issues co-moves with the default rate which

demonstrates the ability of Moody’s ratings to predict

defaults.

The grey bars indicate years which include a period of

economic downturn as indicated by the National Bureau of

Economic Research (NBER) and show three downturns

for the US economy, a first one in 1991 during the First

Gulf War, a second one in 2001 during the downturn in the

internet industry and the terrorist attack in the US and a

third one from 2008 onwards also known as the Global

Financial Crisis.

Generally speaking, the default rate decreases and the

recovery rate increases with increases in credit quality. This

negative relationship between default and recovery rates

is displayed in Figure 4. Again, the grey bars indicate

years which include a period of economic downturn as

indicated by the NBER.

Figures 5 and 6 show histograms for the absolute

recoveries and recoveries which are transformed by the

natural logarithm. The distribution of the log-recoveries

confirms the assumption of a censored standard normal

distribution of Yi
�in Equation (10).

3.2. Fixed effects models

The data set which includes default events, recoveries and

credit ratings is merged with bond issuer characteristics

(from Compustat) and macroeconomic information and

the following models are estimated:

K Model 1: bond ratings;

K Model 2: bond issue characteristics and bond issuer

characteristics;

K Model 3: bond ratings, bond issue characteristics and

bond issuer characteristics;

K Model 4: bond ratings, bond issue characteristics, bond

issuer characteristics and macroeconomic variable.

Table 1 Number of observations, default rates and mean
recoveries per year

Year Total
observations

Default
rate (%)

Mean
recovery (%)

1984 805 0.25 34.78
1985 1224 0.49 53.88
1986 1900 1.26 48.42
1987 2637 1.29 67.41
1988 3059 0.92 38.52
1989 3611 0.89 39.41
1990 4003 1.87 30.22
1991 3972 1.59 37.51
1992 4132 0.92 49.28
1993 4666 0.41 39.78
1994 5474 0.29 48.72
1995 6548 0.49 51.13
1996 8433 0.20 44.82
1997 13046 0.17 50.02
1998 18176 0.19 45.08
1999 23473 0.34 35.53
2000 27182 0.34 22.16
2001 27656 0.62 37.84
2002 27740 0.52 41.71
2003 29140 0.36 33.77
2004 33689 0.09 59.26
2005 44511 0.05 57.25
2006 48789 0.07 63.67
2007 48190 0.02 74.20
2008 45454 0.78 17.57
2009 36441 0.46 28.83

Sum/average 473951 0.57 44.26

Notes: This table shows the number of observations, default rate and

mean recovery per year. Default rate is the ratio between the number of

defaulted issuers and the total number of issuers. Recovery rate is the

ratio of the price of defaulted debt obligations after 30 days of the

occurrence of a default event and the par value.
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Figure 3 Default rate and non-investment grade rate.
Notes: This figure shows that the ratio of non-investment grade
issues to total issues co-moves with the default rate which
demonstrates the ability of Moody’s ratings to predict defaults.
Default rate is the ratio between the number of defaulted issues
and the total number of issues. The non-investment grade rate is
the number of non-investment grade issues to the total number
of issues. The grey bars indicate years which include a period of
economic downturn as indicated by the National Bureau of
Economic Research (NBER).
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Bond ratings are categorized into the classes investment

grade, Ba, B and Caa-C to ensure that a meaningful

number of default events and therefore recoveries are

available. The ratings are then dummy-coded as follows:

x
j
it ¼

1; issue i has assigned rating grade j
at the beginning of year t

0; otherwise

8<: ð31Þ

for grades j¼Ba, B, C.

Bond issue characteristics are the subordination and

seniority level (dummy coded categories senior secured,

senior unsecured and subordinated). Bond issuer charac-

teristics are the age of a firm (measured by the number

of years from the first observation in the Compustat data

set), the size (measured by the natural logarithm of total

assets), Tobin’s Q (ie, the market to book value of assets),

net worth (ie, the equity less cash and short-term

investments to total assets, the profitability (ie, earnings

before interest, tax and depreciation to assets). These

variables are commonly used in the finance literature to

capture financial risk and control for firm heterogeneity.

All financial variables are winsorised at the 5th and 95th

percentile to limit the effect of possibly spurious outliers.

Financial institutions are major bond issuers and are

dummy-coded. We use real GDP growth as a macro-

economic variable. We have tested other variables, such as

inflation and interest rates. These variables have a lower

explanatory power and we exclude multiple macroeco-

nomic variables from the analysis due to the limited

amount of time period for the data sample.

All models include an intercept which represents the

reference category, that is, for Model (1) bonds issued

by investment grade rated firms, for Model (2) senior

secured bonds issued by non-financial institutions and for
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Models (3) and (4) senior secured bonds issued by

investment grade rated non-financial institutions.

An unreported model without co-variates results in the

constant (or mean transformed asset return) of 13.1729 and

the volatility is 4.8789. This implies a Distance-to-Default

of 2.7 (ie, 13.1729/4.8789) and an average probability of

default of 0.9% (ie, F(�2.37)) and the expected recovery

from Equation (17) is 39.00%. Note that the averages

presented in Table 1 average over period averages.

Table 2 shows the results of the parameter estimates for

Model (1)–Model (4). The standard errors are reported

in parentheses in each row below the parameter estimates

and both estimates are significantly different from zero.

It is interesting that information which explains tradition-

ally the likelihood of default is also able to explain the

severity of default (ie recovery rates or LGDs). Most

variables are significant and bond issue characteristics,

bond issuer characteristics and macroeconomic variable

augment the information included in ratings provided by

rating agencies.

With regard to Model (1), the results show that

all three rating effects are significantly different from

zero, which indicates significant differences for the

three grades. For instance, the constant for a grade Ba

borrower is 12.1750�1.9831¼ 10.1920, which yields a

lower distance to default than an investment grade

rating (intercept 12.1750) and therefore a higher PD and

a lower expected recovery compared to an IG grade

borrower. Similarly, the effects for the other grades

can be interpreted where the highest default probability

and lowest recovery is assigned to the riskiest grade

Caa-C. In Model (2), financial institutions have a

lower probability of default and a higher recovery.

Senior unsecured loans and subordinated loans have a

lower recovery than senior secured loans (the reference

category). All financial variables have the expected sign.

For example, the probability of default decreases (and

recovery increases) with net worth. The interpretation

is the same for age, size, Tobin’s Q and profitability.

Model (3) confirms that the results hold if bond ratings,

Table 2 Parameter estimates for the Tobit models

Model 1 Model 2 Model 3 Model 4

Intercept 12.1750*** �4.6692*** 4.4124*** 4.2426***
(0.2839) (0.8212) (0.9952) (0.9911)

Rating Ba �1.9831*** �1.8699*** �2.0451***
(0.1776) (0.4212) (0.4234)

Rating B �4.3996*** �3.6187*** �3.8009***
(0.1401) (0.3293) (0.3351)

Rating Caa-C �7.9420*** �7.0786*** �7.1722***
(0.1972) (0.3926) (0.3959)

Financial institution 2.4335*** 0.3206 0.1389
(0.1951) (0.2373) (0.2401)

Senior unsecured �2.2169*** �1.5841*** �1.6320***
(0.4418) (0.4873) (0.4827)

Subordinated �2.7214*** �1.8490*** �1.8749***
(0.4637) (0.5004) (0.4965)

Age 0.0544*** 0.0666*** 0.0724***
(0.0057) (0.0059) (0.0061)

Size 1.5464*** 0.6270*** 0.6326***
(0.0909) (0.0937) (0.0936)

Tobin’s Q 3.0645*** 3.0454*** 2.9505***
(0.2557) (0.2591) (0.2571)

Net worth 12.7333*** 10.7734*** 10.5525***
(0.5931) (0.5572) (0.5527)

Profitability 0.9846 1.7785 0.3337
(1.8624) (1.8905) (1.8646)

GDP growth 15.1641***
(2.8516)

s 3.8590*** 4.5307*** 4.3765*** 4.3630***
(0.0867) (0.1580) (0.1520) (0.1514)

AIC 19 679 9402 8850 8824
Obs. 473951 237437 237437 237437

Notes: This table shows the results of Tobit models for the logarithm of the recovery rate with rating grades and seniority status as explanatory

variables; standard deviations are in parentheses; ***indicates significance at the 1% level, **indicates significance at the 5% level, *indicates

significance at the 10% level. AIC is Akaike’s Information Criterion and measures the goodness-of-fit.
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bond issue characteristics and bond issuer character-

istics are included. Model (4) shows that also the macro

economy has a significant impact on default probabil-

ities and recovery rates: an increase in the growth rates

of real GDP results in lower probabilities of default and

a higher recovery.

Financial information for the borrower is not observable

for every rated credit and the sample size is higher for

Model (1) than for Model (2) to Model (3). Therefore, we

focus on the comparison of Model (2) to Model (3), which

shows that the inclusion of additional information into

the model reduces the volatility from 4.5307 to 4.3630.

This demonstrates that the models capture valuable infor-

mation regarding the idiosyncratic error in the process of

the asset returns. Moreover, the last row shows that the

Akaike Information Criterion (AIC) declines from 9402 in

Model (2) to 8824 in Model (4).

3.3. Random effects model

Table 3 shows the estimation results for models which

include a systematic random effect in addition. InModel (5),

which include only ratings, the coefficients for the rating

grades are close to the coefficients which we obtained

without a random effect (ie closer than two standard

deviations away). Moreover, we can calculate the total

volatility as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ ~s2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:34392 þ 3:55952
p

¼ 3:8047
which is also very close to the volatility from the model

without a systematic risk component. However, some part

of the total volatility can now be attributed to the

systematic variation (ie, the asset correlation). The asset

correlation given in the last row is then calculated as r ¼
ððo2Þ=ðo2þ~s2ÞÞ¼ðð1:34392Þ=ð1:34392þ3:55952ÞÞ¼0:1248:
In other words, 12.5% of total return variance relates

to systematic risk and 87.5% to idiosyncratic risk. The

Table 3 Parameter estimates for the Tobit models with fixed and random effects

Model 5 Model 6 Model 7 Model 8

Intercept 12.0685*** �4.9221*** 5.9980*** 5.2284***
(0.3892) (0.8236) (0.9647) (1.0629)

Rating Ba �2.0006*** �3.2155*** �3.2248***
(0.1796) (0.3947) (0.3948)

Rating B �4.6298*** �4.873*** �4.8813***
(0.1500) (0.3342) (0.3344)

Rating Caa-C �8.2223*** �7.9772*** �7.9736***
(0.2057) (0.3934) (0.3933)

Financial institution 2.2147*** �0.08288 �0.08844
(0.1802) (0.2138) (0.2139)

Senior unsecured �2.5079*** �1.6983*** �1.6996***
(0.3919) (0.4201) (0.4201)

Subordinated �3.0495*** �1.8684*** �1.8719***
(0.4206) (0.4387) (0.4386)

Age 0.0611*** 0.07832*** 0.07845***
(0.0056) (0.0059) (0.0059)

Size 1.6635*** 0.5597*** 0.5639***
(0.0907) (0.0851) (0.0852)

Tobin’s Q 2.3664*** 2.3484*** 2.3477***
(0.2190) (0.2194) (0.2194)

Net worth 11.1376*** 9.3533*** 9.3556***
(0.5244) (0.4904) (0.4903)

Profitability �1.2928 0.0666 0.0628
(1.6807) (1.6637) (1.6628)

GDP growth 27.9906
(17.5909)

o 1.3439*** 1.4983*** 1.6585*** 1.5466***
(0.1976) (0.2575) (0.2815) (0.2667)es 3.5595*** 3.9476*** 3.6910*** 3.6907***
(0.0867) (0.1355) (0.1256) (0.1256)

s 3.8047 4.2224 4.0465 4.0017
r 0.1248 0.1259 0.1680 0.1494

AIC 18267 8559 7782 7782
Obs. 473 951 237 437 237 437 237 437

Notes: This table shows the results of Tobit models with random effects for the logarithm of the recovery rate with rating grades and seniority status as

explanatory variables; standard deviations are in parentheses; ***indicates significance at the 1% level, **indicates significance at the 5% level,

*indicates significance at the 10% level. AIC is Akaike’s Information Criterion and measures the goodness-of-fit.
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inclusion of issuer and issue specific characteristics and

the GDP also leads to similar coefficients as in the models

without random effect. The asset correlation slightly

increases from Model (6) to Model (7) when ratings are

additionally included. The dummy for financial institutions

is no longer significant indicating that the information

about the difference in recoveries between non-financials

and financials is already captured by the rating. However,

the other coefficients (with the exception of profitability in

every model) remain significant and add explanatory

power in addition to the rating. When the GDP change

is included in Model (8) the correlation is slightly reduced

as some information about the macroeconomy which was

captured by the random factor in Models (5) to (7) is now

explained by the GDP. In this regression the observable

risk factor (GDP change) and the random risk factor are

somewhat interchangeable, as the GDP change is not

statistically significant and correlation is reduced only a

little after including GDP change.

4. Implications for portfolio credit risk

4.1. Measurement of portfolio credit risk

This section focuses on the determination of economic and

regulatory capital under the Basel II rules. Note that

general and specific provisions by the financial institutions

should be sufficient to cover the expected losses, while

(Tier I and Tier II) capital should be sufficient to cover the

difference between the 99.9th percentile of the future loss

and the Expected Loss, which is also known as the Credit-

Value-at-Risk.

Thus, the probability distribution of the future loss of a

credit portfolio and risk figures derived thereof, such as the

Expected Loss or the Value-at-Risk are of a central

concern to financial institutions. This generally requires the

forecast of the loss distribution for a future time period

such as one year. In the following, the time subscript is

dropped for efficiency of exposition. We denote the

exposure of loan i in the portfolio by ai, which is assumed

to be known. Then, the total exposure of the portfolio is

a¼
P

i
nai and the proportion of loan exposure i in the

entire portfolio is denned as Zi¼ ai/a.

The random loss of borrower i, i¼ 1, . . . , n as a fraction

of its total exposure is denoted by

Li ¼ ð1� RGDiÞ �Di ð32Þ

where RGDi is the recovery rate given default.

The expected loss of borrower i as a fraction of its total

exposure can be calculated as

Li ¼ EðLiÞ ¼ EðDijxiÞ � EðRGDi �DijxiÞ

¼ Fð�b0xi=sÞ �
1

1� Fðb0xi=sÞ
� expðb0xi þ 0:5s2Þ

�F � b0xi þ s2

s

	 

� F �b0xi=sð Þ

¼ Fð�b0xi=sÞ � expðb0xi þ 0:5s2Þ � F � b0xi þ s2

s

	 

¼ PDi � ERGDi � PDi

¼ PDi � ELGDi ð33Þ

where the second line follows from the fact that the

recovery is different from zero only if the borrower defaults

and PDi¼P(Di¼ 1|xi) is the probability of default from

Equation (13). The loss rate of a portfolio of loans is the

weighted average of the individual loan loss rates given by

L ¼
Xn
i

Zið1� RRiÞ �Di ð34Þ

The expected portfolio loss is obtained as

L ¼ E
Xn
i¼1

ZiLi

 !
¼
Xn
i¼1

ZiEðLiÞ ¼

¼
Xn
i¼1

Zi � ½PDi � ERGDi � PDi�

¼
Xn
i¼1

Zi � PDi � ELGDi ð35Þ

The dependency structure of the loans is crucial for the

probability distribution of the portfolio loss and risk

measures such as the Value-at-Risk. Generally speaking,

the density of Equation (34) cannot be expressed

analytically but can be obtained by Monte-Carlo simu-

lation. Gordy (2003) and Pykhtin (2003) show that an

analytical solution for the percentiles of the distribu-

tion can be given in the special case of a single stochastic

risk factor (which is the case in our model) and an infini-

tely granular portfolio. The expected loss rate for borro-

wer i is expressed conditional on the systematic risk

factor:

LiðFÞ ¼ EðLijFÞ ¼ EðDijxi;FÞ � EðRRi �Dijxi;FÞ

¼ F �ðb0xi þ o � FÞ=~sð Þ � 1

1� F ðb0xi þ o � FÞ=~sð Þ � expðb
0xi þ o � F þ 0:5~s2Þ � F � b0xi þ o � F þ ~s2

~s

	 

�F �ðb0xi þ o � FÞ=~sð Þ

¼ F �ðb0xi þ o � FÞ=~sð Þ � expðb0xi þ o � F þ 0:5~s2Þ � F � b0xi þ o � F þ ~s2

~s

	 

¼ CPDiðFÞ � CERGDiðFÞ � CPDiðFÞ

¼ CPDiðFÞ � CELGDiðFÞ ð36Þ
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where

CPDiðFÞ ¼ F �ðb0xi þ o � FÞ=~sð Þ ð37Þ
is the conditional default probability, while

CERGDiðFÞ ¼
1

1� F ðb0xi þ o � FÞ=~sð Þ
� expðb0xi þ o � F þ 0:5~s2Þ

�F � b0xi þ o � F þ ~s2

~s

	 

ð38Þ

and CELGDi(F)¼ 1�CERGDi(F) are the conditional

expected recovery rate given default and expected loss

given default given the systematic factor. The random loss

of a granular portfolio is given by

L1 ¼
Xn
i

ZiLiðFÞ ð39Þ

and is therefore a monotonically increasing function of the

systematic factor. Thus, the a-percentile of the future loss,
referred to as Value-at-Risk, is obtained as

La ¼
Xn
i

ZiLi F ¼ F�1ð1� aÞ
� �

ð40Þ

for 0oao 1. Note that this expression reduces to the core

of IRB Basel II formula after a simple reparameterization

if the recovery is not modelled via the asset value model,

and instead, is assumed to be deterministic. In Equation

(24), the asset correlation was defined as r¼o2/s2 with

s2 ¼ o2 þ ~s2: Noting that 1� r ¼ ~s2=s2 and rewriting the

conditional probability of default results in

CPDiðFÞ ¼ F �ðb0xi þ o � FÞ=~sð Þ

¼ F �b0xi � s
~s � s �

o � F � s
~s � s

	 

¼ F �b0xi

s
� s
~s
� o � F

s
� s
~s

	 

¼ F �b0xi

s
� 1ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � ffiffiffi

r
p � F � 1ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

	 

¼ F

F�1ðPDiÞ �
ffiffiffi
r
p � Fffiffiffiffiffiffiffiffiffiffiffi

1� r
p

 !
ð41Þ

which is the conditional default probability in the Basel II

IRB approach in terms of asset correlation where (i) the

systematic factor is fixed to the 99.9th percentile of a

standard normally distributed variable and (ii) the asset

correlation is expressed as a function of the default

probability.

Finally, the model allows for a straightforward definition

of so-called ‘Downturn Loss Given Default’ for the Basel

II model. The downturn probability of default can be

defined by the conditional default probability of Equation

(41). A similar interpretation is possible for the recovery

(or the loss given default) and the individual or portfolio

loss rate. To see this, note that Equations (36), (38) and

(40) depend only on the systematic factor. Therefore a

‘downturn recovery’ is defined as the conditional expected

recovery given an adverse realization of the systematic

factor according to Equation (38)

CERGDiðF ¼ F�1ð1� aÞÞ

¼ 1

1� F ðb0xi þ o � F�1ð1� aÞÞ=~s
� �

� exp b0xi þ o � F�1ð1� aÞ þ 0:5~s2
� �

�F � b0xi þ o � F�1ð1� aÞ þ ~s2

~s

	 

ð42Þ

with a downturn loss given default given as

CELGDi (F¼F�1(1�a))¼ 1�CERGDi(F¼F�1(1�a)).
In the granular portfolio the Downturn LGD is then

given as in Equation (40) where a can be set to 0.999 as

proposed by Basel II. In other words, the downturn LGD

is then based on the same economic stress as the

probability of default.

In summary, given the estimation of a single credit risk

model all common credit risk measures may be calculated.

This is shown exemplary for the random effect model,

Model (1). Table 4 shows in the first three rows the

unstressed measures probability of default, loss given

default and expected loss for different credit ratings cate-

gories. Rows four to seven show the stressed credit

measures conditional probability of default, conditional

Table 4 Summary of credit risk measures derived from random effects model

Rating IG Rating Ba Rating B Rating C

PD 0.0008 0.0041 0.0253 0.1560
ELGD 0.5160 0.5520 0.6061 0.6937
Expected loss 0.0004 0.0022 0.0153 0.1082
Empirical asset correlation 0.1248 0.1248 0.1248 0.1248
CPD 0.0131 0.0483 0.1780 0.5343
CELGD 0.5674 0.6154 0.6877 0.8004
Value-at-risk (a=0.999) 0.0074 0.0297 0.1224 0.4277

Notes: PD is calculated according to Equation (13), ELGD is calculated according to Equation (18), Expected loss is calculated according to Equation

(33), CPD is calculated according to Equation (37), CELGD is calculated as one minus ERGD which is calculated according to Equation (38), value-

at-risk is calculated according to Equation (36).
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expected loss given default and Value-at-Risk based on the

99.9th percentile of the random systematic risk factor.

4.2. Application: Basel II regulatory capital

Table 5 shows the key risk parameters for the calculation

of bank capital for the various rating classes. The risk

parameters include the unstressed parameters Basel asset

correlation, probability of default (PD) and loss rate

given default (ELGD) as well as the stressed parameters

conditional probability of default (CPD) and downturn

loss rate given default. Two approaches are compared for

the latter: the downturn LGD may firstly be calculated

according to the empirical derivation presented by

Equation (42): CELGD or secondly by a proposal by the

Federal Reserve System (2006): US CELGD which applies

a linear relationship of the downturns LGD on ELGD:

USCELGD ¼ 8%þ 92%�ELGD ð43Þ

Note that under the Basel IRB approach (see Basel

Committee, 2006), the regulatory capital is equal to the

difference between the Value-at-Risk (ie, the product of

Basel CPD and loss given default) and the Expected Loss

(ie, the product of PD and ELGD). The Value-at-Risk is

based on the 99.9th percentile of the random systematic

risk factor and pre-specified asset correlations. The two last

rows of Table 5 show that both a deterministic recovery

rate (ELGD) as well as the US proposal lead to an

underestimation of the regulatory capital which increases

with the credit risk in a rating category. For rating C, this

underestimation is up to almost 17% in the instance of

deterministic recoveries (ELGD) and almost 13% for

Equation (43) (US ELGD).

Figure 7 confirms these observations by comparing the

capital requirement which results from ELGD, US

CELGD and CELGD for various probabilities of default.

For high PDs (x-axis) the underestimation can be even

higher (up to 25% for US ELGD) than given the values of

our empirical study.

Table 5 Summary of Basel II credit risk measures derived from Random Effects model

Rating IG Rating Ba Rating B Rating C

Basel asset correlation 0.2355 0.2179 0.1539 0.1200
PD 0.0008 0.0041 0.0253 0.1560
CPD 0.0279 0.0868 0.2097 0.5254
ELGD 0.5160 0.5520 0.6061 0.6937
CELGD 0.5674 0.6154 0.6877 0.8004
US CELGD 0.5547 0.5879 0.6376 0.7182
Credit value-at-risk (ELGD) 0.0140 0.0458 0.1140 0.2840
Credit value-at-risk (CELGD) 0.0154 0.0513 0.1311 0.3400
Credit value-at-risk (US CELGD) 0.0151 0.0489 0.1206 0.2969
Underestimation (ELGD) 9.28% 10.72% 13.05% 16.48%
Underestimation (US CELGD) 2.29% 4.65% 8.01% 12.69%

Notes: This table shows in the first panel the unstressed measures probability of default, loss given default and expected loss for different credit ratings

categories. The second panel shows the stressed credit measures conditional probability of default, conditional expected loss given default and value-

at-risk based on the 99.9th percentile of the random systematic risk factor. The (Basel) asset correlation is calculated by inserting the estimated

probability of default into the Internal Ratings-based Approach formula for the asset correlation. PD is calculated according to Equation (13). (Basel)

CPD is calculated according to Equation (41) and the Basel asset correlation. ELGD is calculated according to Equation (18). CELGD is calculated

according to Equation (42). US CELGD is calculated according to a proposal by US regulators (see Federal Reserve System, 2006) according to

Equation (43). This proposal applies a linear formula for economic downturns for the LGD: 8%þ 92% � ELGD. Credit value-at-risk is equal to the

difference between the value-at-risk (ie, the product of Basel CPD and loss given default) and the expected loss (ie, the product of PD and ELGD). The

underestimation compares CELGD with the regulatory capital based on (i) ELGD and (ii) US CELGD.
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Figure 7 Comparison of Basel II capital for ELGD, US
CELGD and CELGD.
Notes: The regulatory capital is the difference between the
Value-at-Risk and Expected Loss, that is the difference between
the product of (i) CPD and ELGD and the product of PD and
ELGD, (ii) CPD and US CELGD and the product of PD
and ELGD, as well as (iii) CPD and CELGD and the product
of PD and ELGD. No maturity adjustment is included.

12 Journal of the Operational Research Society



    
  A

UTHOR C
OPY

5. Discussion

Financial institutions have implemented in their risk

measurement and management frameworks separate mod-

els for credit risk parameters which are often provided by

external vendors. This practice results in independent and

often constant recovery rates. Owing to the model

independence, financial institutions were surprised that

during the current financial crisis, individual risk para-

meters deteriorated jointly.

The current risk measurement approach has multiple

drawbacks. Firstly, default probabilities, recovery rates

and correlations are often modelled as constant over time.

Secondly, credit risk parameters are modelled indepen-

dently and possibly inconsistently. Thus, dependencies

between parameters are not included. Thirdly, conditional

parameters such as recoveries which are conditional upon

the occurrence of default are modelled by (ordinary least

square) regression models, which do not take the

conditionality into account and lead to inconsistency of

the estimated parameters.

In response to these shortcomings, this paper provides

a top down approach in which individual credit risk

parameters are derived in a closed formula from a single

model. This model allows for a dynamic and consistent

modelling of credit portfolio risks. This framework is

regression based and requires the observation of past

recoveries or losses but does not require market prices.

A causal relationship between credit quality, recovery rate,

volatility, and correlation is established. Formulae for

the unconditional and conditional probability of default,

recovery rate given default, expected loss are developed.

This approach allows financial institutions to have a con-

sistent approach across different credit risk measures used

to derive provisions, economic and regulatory capital as

well as other applications such as credit pricing.

An empirical analysis provides evidence for the inferred

relationship between credit quality, recoveries and correla-

tion. Credit ratings have been highly criticized in the

current financial crisis due to their failure to predict

corporate credit default risk. Using the consistent estima-

tion technique, the information content of credit ratings

and their forecasting ability is augmented by additional

borrower characteristics and a macroeconomic variable.

The study finds that bond ratings, bond issue character-

istics, bond issuer characteristics and macroeconomic

variable explain both default probabilities and recovery

rates or LGDs. These results are also important in light of

the current discussion of the accuracy of credit ratings. The

study confirms both views: credit ratings contain useful

information but additional variables such as bond issue

characteristics, bond issuer characteristics and macroeco-

nomic variable add value.

In addition, the study analysed portfolio credit risk

both for economic and regulatory capital allocation and

identified an underestimation of the regulatory capital if

downturn loss rates given defaults are estimated applying

current best practice approaches.

In relation to the current financial crisis, the paper

may facilitate changes to best practice in credit portfolio

risk modelling and formulation of minimum modelling

standards.
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Appendix

Derivation of the expected recovery rate given default

ERGDi ¼ EðRRijDi ¼ 1;xiÞ ¼
1

1� Fðb0xi=sÞ
� expðb0xi þ 0:5s2Þ � F �b0xi þ s2

s

	 

Substitute mi ¼ b0xi andPDi ¼ 1� Fðmi=sÞ andwrite

ERGDi ¼
Z0
�1

expðyiÞ � hðyijYio0; xiÞdyi

¼
Z0
�1

expðyiÞ �
f �ðyi � miÞ=sð Þ
s � 1� Fðmi=sÞð Þdyi

¼ 1

s � PDi

Z0
�1

expðyiÞ �
1ffiffiffiffiffiffi
2p
p � exp �ð�yi þ miÞ2

2s2

 !
dyi

¼ 1

s � PDi
� 1ffiffiffiffiffiffi

2p
p �

Z0
�1

exp yi �
m2i � 2yimi þ y2i

2s2

	 

dyi

¼ 1

s � PDi
� 1ffiffiffiffiffiffi

2p
p �
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2s2

	 

dyi
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�1

exp
�y2i þ 2yiðmi þ s2Þ � ðmi þ s2Þ2 � mi þ ðmi þ s2Þ2

2s2

 !
dyi

¼ 1

s � PDi
� 1ffiffiffiffiffiffi

2p
p �

Z0
�1

exp
� yi � ðmi þ s2Þ
� �2þ2mis2 þ s4

2s2

 !
dyi

¼ 1

s � PDi
� 1ffiffiffiffiffiffi

2p
p �

Z0
�1

exp
� yi � ðmi þ s2Þ
� �2

2s2

 !
� expðmi þ 0:5s2Þdyi

¼ 1

PDi
� exp mi þ 0:5s2

� �
�
Z0
�1

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp

� yi � ðmi þ s2Þ
� �2

2s2

 !
dyi

¼ 1

PDi
� exp mi þ 0:5s2

� �
� F � mi þ s2

s

	 


Received January 2012;
accepted May 2012 after one revision
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