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Abstract

In this paper, we consider spread rates of credit default swaps (CDSs) in a long memory fractional
L�evy setting, i.e. where interest and hazard rates are driven by processes whose autocovariance
functions decrease very slowly over time. Empirically, this property can be found in many variables
like interest and hazard rates, but the usually applied Markovian models are unable to reflect this.
Using earlier results on conditional distributions of fractional L�evy processes, we carry out an
extensive analysis of parameter sensitivities useful for researchers and practitioners alike and derive
an analytical pricing formula for CDS contracts. A first empirical application is provided as well.

Keywords: Long memory; credit default swap; fractional L�evy process; long range dependence;
fractional Brownian motion; CDS pricing.

1. Introduction

One of the most simplified frameworks for fixed income markets has been de-
veloped and proposed by Vasicek (1977). Basically this model assumes the ex-
istence of an instantaneous short rate r ¼ ðrðtÞÞt�0, i.e. heuristically let �t be the
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length of an infinitesimal small time interval, then the respective risk-free interest
rate is given by rðtÞ�t. In particular, the model is driven by a Brownian motion
B ¼ ðBðtÞÞt�0 which lies in the class of semimartingales. The short rate process is
described by a stochastic differential equation (sde) of the Gaussian Ornstein–
Uhlenbeck type:

drðtÞ ¼ ðk � arðtÞÞdt þ �dBðtÞ, t � 0, rð0Þ 2 R
þ,

for k, a,� > 0, which results in a stationary and mean-reverting process with long-
term mean given by k=a. To simplify things even further one can assume that the
dynamics of r are already given under a risk-neutral pricing measure Q and
therefore it follows that prices of (non-defaultable) zero coupon bonds are given by

Bðt,TÞ ¼ EQ[e�
R T

t
rðvÞdv j rðsÞ, 0 � s � t], 0 � t � T :

Due to the fact that B and therefore r are Markov processes, the above pricing
formula can be evaluated fast and efficient. Of course, as a Gaussian process, r can
also take negatives values which is a major disadvantage of the Vasicek model.
However one can always shift and scale the model to let the probability of a negative
r become arbitrarily small. Analogously, one can introduce a hazard rate process �
to allow for a possible default of the above zero coupon bonds which leads to a credit
market setting, cf. for example Frey and Backhaus (2008) or Sch€onbucher (2003).

Over time, many potential extensions and related models have been proposed,
e.g. Cox et al. (1985) (square root processes to obtain positive short rates), Hull
and White (1990) (time dependent coefficient functions for the Vasicek sde),
Eberlein and Raible (1999) (general L�evy models to obtain distributions different
from the Gaussian one) and Duffie et al. (2000, 2003) (affine Markov processes).
In general, these processes offer many analytical features and provide a convenient
way to include market and idiosyncratic information for the purpose of credit risk
modeling (cf. Hamerle et al., 2012).

All these approaches however, are not able to capture some empirical properties
of interest rates. Statistical observations (cf. Henry and Zaffaroni, 2003; Backus
and Zin, 1993) suggest that the Markov structure inherent in the models above is
not able to reflect the situation at the real markets as there is evidence of so-called
`long range dependence' (or `long memory') which basically means that the
autocovariance function of the respective time series does decline very slowly (cf.
Sec. 4 of Backus and Zin (1993) for the short rate in above model).

Furthermore, in the literature, several concepts specify the hazard rate as a
function comprising macroeconomic as well as firm-specific variables. For
example, Duffie et al. (2009) chose the 3-month Treasury bill rate and the trailing
1-year return on the S&P 500 index to integrate macroeconomic information.
Empirical evidence on the long memory property of interest rates has already been
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cited. Moreover, equity processes are also partially known to exhibit increments
that are positively correlated over the long run (cf. Henry, 2002). In general, there
are many macroeconomic and financial variables which are assumed to have long
range dependence (cf. Baillie, 1996). These considerations give rise to the as-
sumption that beside short also hazard rates incorporate long memory and again,
classical Markovian models are not able to capture this fact.

To overcome this particular structural drawback, fractional models have been
suggested (cf. Ohashi, 2009; Fink et al., 2012; Biagini et al., 2013; Fink, 2013).
However the past work concentrated on discussions of suitable no-arbitrage set-
tings and conditional distributions of the appearing fractional processes. Although
Biagini et al. (2013) derive explicit formulas for derivative pricing, credit default
swaps (CDSs) have not yet been fully analyzed in particular. Hao et al. (2014) is a
first step, however they only focus on fractional Brownian motion (fBm) and a
two-firm contagion model. Our approach, which is based on the much more
general setting of Biagini et al. (2013) and especially Fink (2013), covers also the
fractional L�evy case.

The central aim of this paper is to develop an analytical formula for the valuation
of CDS contracts by working in the mentioned fractional setting and therefore
explicitly incorporating long memory. We shall furthermore provide an explicit
sensitivity analysis for standard defaultable bonds and CDS contracts alike.

The remainder of this paper is organized as follows: A brief introduction to the
notion of long memory and the use of Molchan–Golosov kernels generating frac-
tional L�evy processes is presented in Sec. 2. In Sec. 3, which summarises earlier
results of Fink (2013), a fractional market model is described and pricing formulas
for (defaultable) zero coupon bonds are stated. While Sec. 4 provides an extensive
analysis of the various model parameters in the fractional setting, Sec. 5 proposes
new results on the spread rates of CDSs in our general fractional credit setting.
Furthermore, the model-implied CDS term structure is fitted to real market data.

1.1. Notation

For the whole paper we shall assume a given complete probability space
ð�,F ,QÞ. Denote by L2ð�Þ the space of square integrable random variables, i.e.
random variables with finite variance on �. For a family of random variables
ðXðiÞÞi2I , I some index set, let �fXðiÞ, i 2 Ig denote the completion (with respect
to sets of measure zero) of the generated �-algebra.

For A � R and n 2 N, the spaces of integrable and square integrable functions
f : A ! Rn�n are denoted by L1ðA,Rn�nÞ and L2ðA,Rn�nÞ. If the dimension of the
image space is n ¼ 1 we shall just write L1ðAÞ and L2ðAÞ. Moreover for T > 0, k�k
is the L2-norm and h�, �i the corresponding Euclidian scalar product on L2ð[0,T]Þ.

CDS pricing with long memory
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2. Molchan–Golosov Fractional L�evy Processes

Before we start with fractional L�evy processes, the core objects of this paper, we
need to fix the necessary notions and definitions. Therefore we shall give a brief
overview of fractional analysis.

2.1. Fractional calculus

Fractional integrals and derivatives can be used to generate fractional processes
with dependent increments by convolution of a stochastic process which has in-
dependent returns. However there are various ways to do this and not all
approaches lead to the same result. For example fractional L�evy processes by so
called Mandelbrot–Van Ness kernels (cf. Mandelbrot and Van Ness, 1968) have
been introduced by Marquardt (2006) while Tikanmäki and Mishura (2011) and
Fink (2013) considered Molchan–Golosov kernels (cf. Molchan and Golosov,
1969; Kleptsyna et al., 1999; Norros et al., 1999; Decreusefond and Üstünel,
1999). In general, both approaches lead to different processes and have their own
advantages and shortcomings. The Mandelbrot–Van Ness definition leads to sta-
tionary processes while the Molchan–Golosov kernels allow for subordinators, i.e.
a.s. increasing processes. In this paper, we shall focus on the later ones out of a
simple reasoning: in most cases, interest rates and especially hazard rates should
be positive (excluding cases like Japan and the recent negative deposit rate in the
Eurozone).

A very detailed survey on fractional calculus can be found in Samko et al.
(1993). The main concept is also closely related to Riemann–Stieltjes integration
and stochastic calculus and we refer the interested reader to Zähle (1998, 2001).
From now on we shall work on the compact interval [0,T] for some fixed T > 0.

Definition 2.1. For a constant 0 < d < 1 and f 2 L1ð[0,T]Þ define the fractional
Riemann–Liouville integral of f of order d with finite time horizon by the
expression

ðI dT�f ÞðsÞ ¼
1

�ðdÞ
Z T

s
f ðrÞðr � sÞd�1dr, 0 < s < T , ð2:1Þ

where � shall be the Gamma-function.

For f 2 L1ð[0, T]Þ the fractional integrals always exists almost everywhere, cf.
(7) of Zähle (1998). The fractional derivative with finite time horizon however is
another story. For � 2 ð0, 1Þ it can be introduced as an inverse operation to
fractional integration, but its existence is much more sophisticated. However we
will not worry about this question in the present paper and consider only situations
where the expression exists and is well-defined.

H. Fink & C. Scherr
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Definition 2.2. For a constant 0 < d < 1 let g 2 L1ð[0,T]Þ such that there exists
 g 2 L1ð[0, T]Þ satisfying

gðsÞ ¼ I dT�ð gð�ÞÞðsÞ, 0 < s < T : ð2:2Þ

Then define the fractional Riemann–Liouville derivative of g of order d by

ðDd
T�gÞðuÞ ¼

1
�ð1� dÞ

gðuÞ
ðT � uÞd þ d

Z T

u

gðuÞ � gðsÞ
ðs� uÞdþ1

ds

� �
, 0 < u < T :

ð2:3Þ

As it is convention, we shall often write I�d
T� ¼ Dd

T�. For d ¼ 0 we set
I dT� ¼ Dd

T� ¼ id.

2.2. Convolution

Motivated by interest and hazard rates which are usually positive processes we will
from now on focus on the class of so-called Molchan–Golosov fractional L�evy
processes which are introduced by a Molchan–Golosov integration kernel
(cf. Molchan and Golosov, 1969) and have been considered in Tikanmäki and
Mishura (2011) and Fink (2013). This class includes a certain type of fractional
subordinators, i.e. a.s. increasing processes, which can be used to model positive
processes (e.g. Bender and Marquardt, 2009 who considered a Black–Scholes
model with fractional volatility). Furthermore we want to mention that we will
restrict our considerations in this paper to a fractional parameter between zero and
0.5 which reflects exactly the long range dependence case. In the basic work of
Tikanmäki and Mishura (2011) and Fink (2013) a more general definition is
presented. We shall consider a given multivariate square-integrable L�evy process
L ¼ ðLðtÞÞt2[0,T] ¼ ðL1ðtÞ, . . . ,LnðtÞÞ>t2[0,T], for n 2 N and T > 0, on a filtered
probability space ð�,F , ðF tÞt2[0, T],QÞ satisfying the usual conditions (right-
continuity and completeness). For the rest of this section we will state the nec-
essary results from Fink (2013).

For f 2 L2ð[0, T],Rn�nÞ and d ¼ ðdð1Þ, . . . , dðnÞÞ> 2 [0, 1
2 Þn define for s 2

[0, T] the convolution operator

zdðf , sÞ :¼

cdð1Þs�dð1ÞI dð1ÞT� ðð�Þdð1Þf11ð�ÞÞðsÞ . . . cdðnÞs�dðnÞI ðnÞT�ðð�ÞdðnÞf1nð�ÞÞðsÞ
..
. . .

. ..
.

cdð1Þs�dð1ÞI dð1ÞT� ðð�Þdð1Þfn1ð�ÞÞðsÞ . . . cdðnÞs�dðnÞI dðnÞT� ðð�ÞdðnÞfnnð�ÞÞðsÞ

0
BBBB@

1
CCCCA

CDS pricing with long memory
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using fractional integration as defined in (2.1), where for 1 � j � n the one-
dimensional function fij is the ijth component of f and

cdðj Þ ¼
ð2dðjÞ þ 1Þ�ðdðjÞ þ 1Þ�ð1� dðjÞÞ

�ð1� 2dðjÞÞ
� � 1

2

:

One can furthermore show that zdðf , �Þ 2 L2ð[0,T ],Rn�nÞ.
Definition 2.3. [Definition 3.1 of Fink (2013)] For d ¼ ðdð1Þ, . . . , dðnÞÞ> 2
[0, 1

2 Þn and n 2 N we define the kernel zdð1̂[0, tÞ, �Þ : [0, T] ! Rn�n using

1̂[0, tÞð�Þ :¼
1[0, tÞð�Þ . . . 0

..

. . .
. ..

.

0 . . . 1[0, tÞð�Þ

0
BB@

1
CCA:

Then a Molchan–Golosov fractional L�evy process (MG-fLp)

Ld ¼ ðLdðtÞÞt2[0,T] ¼ ðLdð1ÞðtÞ, . . . ,LdðnÞðtÞÞ>t2[0,T]
is defined in the L2ð�Þ-sense via

LdðtÞ ¼
Z t

0
zdð1̂[0, tÞ, sÞdLðsÞ, t 2 [0,T]: ð2:4Þ

Define for d 2 [0, 1
2 Þn and suitable f : [0,T] ! Rn�n (such that the expression

below exists) the deconvolution operator for s 2 [0, T] by

zd☆ ðf , sÞ :¼

c�1
�dð1Þs

dð1ÞI dð1ÞT� ðð�Þ�dð1Þf11ð�Þð�ÞÞðsÞ . . . c�1
�dðnÞs

dðnÞI dðnÞT� ðð�Þ�dðnÞf1nð�Þð�ÞÞðsÞ
..
. . .

. ..
.

c�1
�dð1Þs

dð1ÞI dð1ÞT� ðð�Þ�dð1Þfn1ð�Þð�ÞÞðsÞ . . . c�1
�dðnÞs

dðnÞI dðnÞT� ðð�Þ�dðnÞfnnð�Þð�ÞÞðsÞ

0
BBBB@

1
CCCCA:

Example 2.4. [Example 3.1 of Fink (2013)] Let n ¼ 1 in Definition 2.3.

(i) For d ¼ 0 we get by definition Ld ¼ L.
(ii) Choosing as driving L�evy process a standard Brownian motion, we get a

classical fBm on [0, T ] like in Samorodnitsky and Taqqu (1994).
(iii) For a strictly increasing subordinator as driving L�evy process we obtain

a fractional subordinator in the sense of Example 1 of Bender and
Marquardt (2009), which is itself a.s. increasing.

Proposition 2.5. [Proposition 3.1 of Fink (2013)] For s, t 2 [0,T] we have for
the mean-value and autocovariance function

(i) E[LdðtÞ] ¼ R t
0 zdð1̂[0, tÞ, sÞds � E[Lð1Þ].

H. Fink & C. Scherr
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(ii) Cov[LdðtÞ,LdðsÞ] ¼ 1
2 ðcdðiÞ, dðj ÞCov[Lið1Þ,Ljð1Þ]ðt dðiÞþdðj Þþ1 þ sdðiÞþdðj Þþ1�

jt � sjdðiÞþdðj Þþ1ÞÞ1�i, j�n, where

cdðiÞ, dðj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2dðiÞ þ 2Þ sinð�ðdðiÞ þ 1

2ÞÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð2dðjÞ þ 2Þ sinð�ðdðjÞ þ 1
2ÞÞ

q
�ðdðiÞ þ dðjÞ þ 2Þ sinð�ðdðiÞ þ dðjÞ þ 1Þ=2Þ :

In the literature there are various definitions for `long range dependence' and a
good overview can be found in Samorodnitsky (2007). As discussed there, early
considerations of Mandelbrot, e.g. Mandelbrot (1965) and Mandelbrot and Wallis
(1968) were motivated by studies on the flow of water in the Nile river carried out
by Hurst (1951, 1956). In the context of this paper, we shall specify long range
dependence by the rate of decrease of the autocovariance function.

Definition 2.6. Let X ¼ ðXðtÞÞt2R be a weakly stationary process and let

�XðhÞ :¼ CovðXðt þ hÞ,XðtÞÞ, h 2 R,

be its autocovariance function. The process X exhibits long range dependence if
d 2 ð0, 1

2Þ and c� > 0 exists such that

lim
h!1

�XðhÞ
h2d�1

¼ c�: ð2:5Þ

Consider for d 2 [0, 1
2Þ the covariance between two increments of an one-

dimensional MG-fLp Ld. Then we get by Proposition 2.5

�LdðhÞ :¼ CovðLdðkÞ � Ldðk � 1Þ,Ldðk þ hÞ � Ldðk þ h� 1ÞÞ

¼ E[L2ð1Þ]
2

[jhþ 1j2dþ1 � jh� 1j2dþ1 � 2jhj2dþ1], ð2:6Þ

for h, k 2 N with hþ k � T .
Of course, we defined MG-fLps just on a compact time-set and therefore the

definition above cannot be applied directly. However the finite time horizon T > 0
can be arbitrarily large and we have

[jhþ 1j2dþ1 � jh� 1j2dþ1 � 2jhj2dþ1] � Ch2d�1,

as h ! 1 for some fixed C > 0:

2.3. Integration

To explain our credit market setting in the next session, integration needs to be
specified. For this, an L2ð�Þ-approach will be chosen (cf. Pipiras and Taqqu, 2000,
2001; Marquardt, 2006; Tikanmäki and Mishura, 2011; Fink, 2013). Again, we

CDS pricing with long memory
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shall follow Fink (2013): Considering step functions

f ð�Þ ¼
Xm
k¼1

ak1[tk , tkþ1Þð�Þ,

where m 2 N, m � 1, 0 � t1 � � � � � tm � T and ak 2 Rn�n for 1 � k � m, we
set Z T

0
f ðsÞdLdðsÞ :¼

Xm
k¼1

akðLdðtkþ1Þ � LdðtkÞÞ:

It is now easy to see, thatZ T

0
f ðsÞdLdðsÞ ¼

Z T

0
zdðf , sÞdLðsÞ:

One can show that this property holds true for all integrands in L2ð[0,T],Rn�nÞ
as stated by the following theorem.

Theorem 2.7. [Theorem 3.1 of Fink (2013)] For d ¼ [0, . . . , dðnÞÞ> 2
ð� 1

2 ,
1
2Þn, n 2 N, let f 2 L2ð[0,T],Rn�nÞ. Then the integral

R T
0 f ðsÞdLdðsÞ exists

as a (componentwise) L2ð�Þ-limit of approximating step functions in �d
T (also

componentwise). Furthermore, we have the identityZ T

0
f ðsÞdLdðsÞ ¼

Z T

0
zdðf , sÞdLðsÞ,

which holds (componentwise) in L2ð�Þ.

3. Fractional Credit Model

The specification of our market model generalizes the concept of the well-known
two-factor Gaussian or Vasicek model. As in the fractional setting of Biagini
et al. (2013), we adopt the structure of this reduced form approach and initially
specify a finite time horizon T � > 0, a complete, filtered probability space ð�,F ,
ðF tÞ0�t�T � ,QÞ and a bivariate process ðr,HÞ :¼ ðrðtÞ,HðtÞÞ0�t�T � where H
represents the default indicator process, i.e.

HðtÞ ¼ 1f��tg, 0 � t � T �

The random variable � denotes a ðF tÞ0�t�T �-stopping time, the so-called default
time. Furthermore, let ðHtÞ0�t�T � be the filtration generated by H.

Remark 3.1. Markets driven by MG-fLps might allow arbitrage as these
fractional processes are, in general, no longer semimartingales (cf. Delbaen and

H. Fink & C. Scherr
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Schachermayer, 1989, 1994; Bender et al., 2007; Cheridito, 2003). First however,
in the case of fBm, one can derive the Vasicek model (which we will consider
below) from the fractional Heath–Jarrow–Morton approach of Ohashi (2009)
which is based on previous work of Guasoni et al. (2008, 2010). Here the
implementation of suitable transaction costs excluded arbitrage. The existence of
an average risk-neutral measure can be proven and we can formally calculate
prices of defaultable bonds or more general contingent claims under this measure
as suggested in Sottinen and Valkeila (2001). Second, if we use a MG-fLp
with finite variation like a fractional Poisson process, we are again in
the semimartingale case. The situation of non-fBm MG-fLps with infinite
variation has not yet been analyzed, however we shall include it nevertheless in
our following analysis, as one can always directly model under a risk neutral
measure.

Assumption 3.2. [Credit market structure; cf. Frey and Backhaus (2008),
Assumption 3.1]

(i) There is a subfiltration ðGtÞ0�t�T � of ðF tÞ0�t�T � , with

F t :¼ Gt _Ht, 0 � t � T �

� is a ðGtÞ0�t�T �-progressive process, which describes the intensity of H (cf.
Corollary 5.1.5 of Bielecki and Rutkowski (2002)), satisfying

R t
0 �ðsÞds <1

a.s. for all 0 � t � T � and

Qð� > t j GtÞ ¼ E[1� HðtÞ j Gt] ¼ exp �
Z t

0
�ðsÞds

� �
: ð3:1Þ

For all bounded G1-measurable random variables �, G1 :¼ _0�t�T � Gt, we
have

E[� j F t] ¼ E[� j Gt]: ð3:2Þ
(ii) Under the risk-neutral pricing measure Q, the price of an arbitrary

F T -measurable claim X 2 L1ð�Þ with maturity 0 � T � T � at time 0 � t �
T is given by Vðt, TÞ :¼ E[X j F t].

These standard assumptions seem rather technical at first glance. Yet, the fil-
tration ðF tÞ0�t�T � basically reflects the market information at time t, i.e. the
investor knows about the state variables r and � as well as the default indicator
process H at time t. Furthermore, for 0 � t þ�t � T �, we have

Qðt < � � t þ�t j F tÞ 	 1f�>tg�ðtÞ�t

CDS pricing with long memory
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which means that �ðtÞ�t is approximately the conditional probability under Q of
defaulting in a small time interval after t, given the survival up to time t. However,
recall that Q is a risk-neutral measure, and this probability does not directly reflect
the \real" default probability.

Using Assumption 3.2(ii) and invoking e.g., Proposition 3.1 of Lando (1998),
the price of a defaultable zero coupon bond �Bðt, TÞ for 0 � t � T � T � can be
calculated as follows:

�Bðt, TÞ ¼ E[e�
R T

t
rðsÞds1f�>TgjF t] ¼ 1f�>tgE[e

�
R T

t
[rðsÞþ�ðsÞ]dsjGt]: ð3:3Þ

This result is very useful because it implies that for pricing purposes we only need
to focus on the bivariate process ðr,�Þ and can ignore the default indicator process.

To account for long range dependence in interest and hazard rates, we now
propose a two-dimensional fractional Vasicek model (cf. Vasicek, 1977) for ðr,�Þ,
based on the MG-fLps introduced above.

Assumption 3.3. [Fractional Vasicek credit market; Version of Fink (2013),
Assumption 5.2] For d ¼ ðdð1Þ, . . . , dðnÞÞ> 2 [0, 1

2 Þn, n 2 N, take k : [0,T �]
! Rn and a : [0,T �] ! Rn�n locally integrable, � non-singular for every
t 2 [0, T �], with �ij and ð�Þ�1

ij of bounded pðjÞ-variation for some 0 < pðjÞ <
1=[1� dðjÞ] for all 1 � i, j � n, and fixed weights �,	 2 ðRþÞn. Let the process
Ld :¼ ðLdðtÞÞt2[0, T �] be the unique solution of the Vasicek sde

dLdðtÞ ¼ [kðtÞ � aðtÞLdðtÞ]dt þ �ðtÞdLdðtÞ, t 2 [0,T �], Ldð0Þ 2 R
n

which exists according to Proposition 4.9 of Fink (2013). Then set

rðtÞ ¼ h�,LdðtÞi and �ðtÞ ¼ h	,LdðtÞi, t 2 [0,T �]: ð3:4Þ
Again, the model assumptions appear to be rather technical. However, if we

take, for example, a fractional subordinator as the driving power behind the
Vasicek sde, it suffices to choose continuous functions a, k and � in order to satisfy
the conditions of Assumption 3.3. Moreover, in the general setup above, we have
Gt ¼ �fLdðsÞ, s 2 [0, t]g for all t 2 [0, T �], if �þ 	 is componentwise not zero.

Using pricing formula (3.3), we can explicitly calculate the value of a defaul-
table zero coupon bond in the fractional Vasicek credit market.

Theorem 3.4. [Theorem 5.3 of (Fink, 2013)] Let 0 � t � T � T � and define

Dðt, TÞ :¼ R T
t e�

R s
t aðvÞdvds. If

E exp � �þ 	,

Z T

t
Dðv, TÞ�ðvÞdLdðvÞ

� �� �� 	
<1

H. Fink & C. Scherr
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then, setting hð�Þ :¼ Dð�,TÞ�ð�Þ, the price of a defaultable zero coupon bond in the
fractional Vasicek credit market can be determined as follows:

�Bðt,TÞ ¼ 1f�>tgE[e
�
R T

t
[rðsÞþ�ðsÞ]dsjGt]

¼ 1f�>tg exp � �þ 	,Dðt,TÞLdðtÞ þ
Z T

t
Dðv, TÞkðvÞdv

� �� �

� exp � �þ 	,

Z t

0
z�d
� 1[0, t]z

d h1[t, T], �

 �

, v

 �

dLdðvÞ
� �� �

� exp
Z T

t
 zd h1[t, T], v


 �>ið�þ 	Þ
 �
dv

� �
: ð3:5Þ

4. Parameter Sensitivity

In this section, we want to consider the parameter sensitivities in the fractional credit
setting. Previously, we introduced fractional credit markets driven by fractional
Vasicek dynamics. In the classical work of Vasicek (1977) the drawback of getting
a negative short rate r with positive probability was justified by the significant
advantage of having a market model that provides easily tractable bond prices
with analytical formulas. As mentioned, one can always shift and scale the model
to make the probability of a negative short rate as small as possible. For simplicity,
in the following analysis we shall set 	 ¼ 0 in (3.4) since obviously the formula
in Theorem 3.4 is somewhat symmetric with respect to interest and hazard rates.

Firstly, we chose a one-dimensional fractional Brownian motion as driving
power in Assumption 3.3, which this leads to a fractional (Brownian) Vasicek
model (cf. Fink et al., 2012) and includes the classical Vasicek model by setting
d ¼ 0. However in comparison to Vasicek (1977) the numerics have become more
difficult. Still, it is the natural extension of the classical model and allows long
range dependence in the increments of the short rate.

Secondly, we take a fractional Poisson model in Assumption 3.3 with intensity
� > 0 (cf. Example 5.6 of Fink, 2013). This setting addresses the above mentioned
drawback of the Gaussian setting: When using fractional subordinators as driving
processes it is ensured that the short rate r cannot become negative. Also the model
still allows for fairly explicit calculations of zero coupon bond prices. To sum
things up, we consider (cf. Theorem 3.4):

. a fractional Brownian model with rð0Þ, k,� � 0 and a > 0, d 2 [0, 1
2Þ and

Bð0, TÞ ¼ exp �Dð0,TÞrð0Þ � k

Z T

0
Dðv,TÞdv

�

CDS pricing with long memory
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þ �2

2
k zdðDð�,TÞ1[0,T], vÞ1[0,T]ð�Þk2

�

. a fractional Poisson model with rð0Þ, k, � � 0 and a, � > 0, d 2 [0, 1
2Þ and

Bð0, TÞ ¼ exp �Dð0, TÞrð0Þ � k

Z T

0
Dðv, TÞdv

�

þ �

Z T

0
expð��zdðDð�, TÞ1[0,T], vÞÞdv

�
:

The rest of this section will be dedicated to a detailed analysis of the bond price
dynamics in both models since in practical considerations, parameter sensitivities
play an important role.

For example in the classical Black–Scholes model of Black and Scholes (1973)
these sensitives are captured by the so-called greeks which are basically the
derivatives with respect to the individual parameters. Market participants can apply
the greeks to carry out a ceteris paribus analysis and approximate how the prices
would change under certain assumptions. In the Black–Scholes model the greeks
also play an important role when building hedging strategies. Of course these
considerations are only valid if the model assumptions are. Therefore such deri-
vatives should be used with care.

We will carry out this study by letting one parameter vary while the rest will be
fixed for the time being. For goodvisibility, reference parameters shall be rð0Þ ¼ 0:1,
a ¼ 4, k ¼ 1 and � ¼ 1. For the fractional Poisson model the reference intensity
shall be � ¼ 1. The fractional parameter d will take the values 0, 0:1, 0:25 and 0:45.

Denote for the rest of this section the zero coupon bond price in the fractional
Brownian model by B fBmð0,TÞ and in the fractional Poisson model by BPoið0,TÞ,
0 � T � T �. Considering the bond price as a function with respect to a certain
parameter will be denoted by subscription, e.g. B fBm

rð0Þð0,TÞ.

4.1. Parameter sensitivity with respect to rð0Þ
At T ¼ 0 all bond prices are equal to 1 but afterwards a higher start interest rate
rð0Þ also leads to a lower bond price as can be seen in Figs. 1 and 2.

For higher maturities T this effect becomes weaker since the weighting factor
Dð0,TÞ in the pricing formula is bounded by a�1. For all d 2 [0, 1

2Þ the absolute
influence of rð0Þ on the bond price is equal while the relative influence varies. The
derivative with respect to rð0Þ exists and is given by

@B fBm
rð0Þð0, TÞ
@rð0Þ ¼ �Dð0, TÞ � B fBm

rð0Þð0,TÞ,
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@BPoi
rð0Þð0, TÞ
@rð0Þ ¼ �Dð0, TÞ � BPoi

rð0Þð0, TÞ:

4.2. Parameter sensitivity with respect to a

As can be seen in Fig. 3, the influence of the parameter a is more difficult. The
reason behind this is the fact that Dð�, TÞ (and therefore a) is also involved via the
fractional integration in the bond price formulas.

However it can be seen from these formulas that the impact of the parameter a
is still mostly monotone. If the probability of getting a negative short rate r is small
enough, a higher value of a leads to a higher bond price. This can be explained by
the following: the parameter a manages the speed of mean reversion of the short

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

← r(0) = 0

r(0) = 0.225 →

κ = 0

B
(0

,T
)

T
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

← r(0) = 0

r(0) = 0.225 →

κ = 0.1

B
(0

,T
)

T

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

← r(0) = 0

r(0) = 0.225 →

κ = 0.25

B
(0

,T
)

T
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

← r(0) = 0

r(0) = 0.225 →

κ = 0.45
B

(0
,T

)

T

Fig. 1. Bond prices B fBmð0, TÞ in the fractional Brownian model for varying rð0Þ, maturity T and
fractional parameter d, using constant coefficients a ¼ 4, k ¼ 1 and � ¼ 1. d ¼ 0 corresponds to the
classical Brownian Vasicek model. In particular, rð0Þ increases by steps of size 0.025 from 0 to
0.225.
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rate. With high probability any short time divergence from the mean will lead to a
higher short rate (since negative values occur only with small probability) and
therefore to a lower bond price. High values of a lead to a stronger mean-reversion
and therefore the impact of such a potential divergence will be small and vice
versa.

The suddenly increasing prices are explained by the positive probability of
getting a negative short rate. The variance of r increases with the fractional pa-
rameter and therefore the probability of negative values also rises. As a conse-
quence, bond prices tend to get higher for longer maturities. Combined with a
weaker mean reversion (i.e. small values of a) this effect is even stronger.

Since in the fractional Poisson model the short rate is always positive the
influence of a is more straightforward as Fig. 4 shows: a higher value of a leads
ceteris paribus to a higher bond price. The calculation of the derivative with
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Fig. 2. Bond prices BPoið0, TÞ in the fractional Poisson model for varying rð0Þ, maturity T and
fractional parameter d, using constant coefficients a ¼ 4, k ¼ 1, � ¼ 1 and � ¼ 1. In particular, rð0Þ
increases by steps of size 0.025 from 0 to 0.225.
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respect to a is more complicated and follows:

@B fBm
a ð0,TÞ
@a

¼ � @Dð0, TÞ
@a

rð0Þ � k
@
R T
0 Dðv, TÞdv
@a

 

þ �2

2
@

@a
k zdðDð�, TÞ1[0,T], vÞ1[0, T]ð�Þk2

!
� B fBm

a ð0, TÞ,

where we calculate using the classical rule for differentiation under the integral
sign

@

@a
k zdðDð�,TÞ1[0,T], vÞ1[0,T]ð�Þk2

¼ c2d
@

@a

Z T

0
s�2d

Z T �

s

rdDðr,TÞ1[0,T]ðrÞ
ðr � sÞ1�d

dr

� �2

ds

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

← a = 5

a = 0.5 →

κ = 0

B
(0

,T
)

T
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

← a = 5

a = 0.5 →

κ = 0.1

B
(0

,T
)

T

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

← a = 5

a = 0.5 →

κ = 0.25

B
(0

,T
)

T
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

← a = 5

a = 0.5 →

κ = 0.45
B

(0
,T

)

T

Fig. 3. Bond prices B fBmð0, TÞ in the fractional Brownian model for varying a, maturity T and
fractional parameter d, using constant coefficients rð0Þ ¼ 0:1, k ¼ 1 and � ¼ 1. d ¼ 0 corresponds to
the classical Brownian Vasicek model. In particular a increases by steps of size 0.5 from 0.5 to 5.
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¼ c2d

Z T

0
s�2d @

@a

Z T �

s

r dDðr, TÞ1[0, T]ðrÞ
ðr � sÞ1�d

dr

� �2

ds

¼ 2c2d

Z T

0
s�2d

Z T �

s

r dDðr,TÞ1[0,T]ðrÞ
ðr � sÞ1�d

dr

� �

� @

@a

Z T �

s

r dDðr, TÞ1[0,T]ðrÞ
ðr � sÞ1�d

dr

� �
ds

¼ 2c2d

Z T

0
s�2d

Z T �

s

r dDðr,TÞ1[0,T]ðrÞ
ðr � sÞ1�d

dr

� �

�
Z T �

s

r d @
@a Dðr, TÞ1[0,T]ðrÞ
ðr � sÞ1�d

dr

 !
ds:
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Fig. 4. Bond prices BPoið0, TÞ in the fractional Poisson model for varying a, maturity T and frac-
tional parameter d, using constant coefficients rð0Þ ¼ 0:1, k ¼ 1, � ¼ 1 and � ¼ 1. In particular a
increases by steps of size 0.5 from 0.5 to 5.
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We finally see that

@

@a
k zdðDð�, TÞ1[0, T], vÞ1[0, T]ð�Þk2

¼ 2 zdðDð�,TÞ1[0, T], vÞ1[0,T]ð�Þ, zd
@

@a
Dð�, TÞ1[0,T], v

� �
1[0,T]ð�Þ

� �
:

In the fractional Poisson case we have

@BPoi
a ð0, TÞ
@a

¼ � @Dð0,TÞ
@a

rð0Þ � k
@
R T
0 Dðv,TÞdv
@a

 

þ �
@

@a

Z T

0
expð��zdðDð�,TÞ1[0, T], vÞÞdv

!
� B fBm

a ð0,TÞ,

where we obtain again by interchanging differentiation and integration

@

@a

Z T

0
expð��zdðDð�,TÞ1[0,T], vÞÞdv

¼
Z T

0

@

@a
expð��zdðDð�,TÞ1[0,T], vÞÞdv

¼ ��
Z T

0

@

@a
zdðDð�,TÞ1[0,T], vÞ expð��zdðDð�,TÞ1[0,T], vÞÞdv:

Therefore we have in total

@B fBm
a ð0,TÞ
@a

¼ � @Dð0,TÞ
@a

rð0Þ � k

Z T

0

@

@a
Dðv,TÞdv

�

þ�2 zdðDð�,TÞ1[0,T], vÞ1[0,T]ð�Þ, zd
�

@

@a
Dð�, TÞ1[0, T], v

� �
1[0,T]ð�Þ

��
� B fBm

a ð0, TÞ

and

@BPoi
a ð0,TÞ
@a

¼ � @Dð0, TÞ
@a

rð0Þ � k

Z T

0

@

@a
Dðv,TÞdv

�

� ��

Z T

0

@

@a
zdðDð�, TÞ1[0,T], vÞ

� expð��zdðDð�,TÞ1[0, T], vÞÞdv
�
� BPoi

a ð0,TÞ:
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4.3. Parameter sensitivity with respect to k

The impact of the parameter k is again a bit more straightforward. Figure 5 shows
that a higher value of k results mostly in a lower bond price since for fixed a, the
parameter k controls the long term mean of the process r. For longer maturities the
influence of k becomes stronger. A special case are again the suddenly increasing
bond prices.

As before they can be explained by the probability of negative values of the
short rate. Lower values of k increase this probability. Of course this is not an issue
in the fractional Poisson model, cf. Fig. 6.

The derivative with respect to k exists and is given by

@B fBm
k ð0,TÞ
@k

¼ �
Z T

0
Dðv,TÞdv � B fBm

k ð0,TÞ,

@BPoi
k ð0, TÞ
@k

¼ �
Z T

0
Dðv,TÞdv � BPoi

k ð0,TÞ:
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Fig. 5. Bond prices B fBmð0, TÞ in the fractional Brownian model for varying k, maturity T and
fractional parameter d, using constant coefficients rð0Þ ¼ 0:1, a ¼ 4 and � ¼ 1. d ¼ 0 corresponds to
the classical Brownian Vasicek model. In particular k increases by steps of size 0.25 from 0 to 2.25.
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4.4. Parameter sensitivity with respect to �

The parameter � has a positive impact on the bond price in the fractional Brownian
model, cf. Fig. 7. If � equals zero the short rate r is deterministic and cannot
become negative. Bond prices decrease with longer maturity. However if � is
positive and takes high values, the probability of r getting negative gets higher,
which means that bond prices will be higher, too.

In the fractional Poisson model, cf. Fig. 8, the influence of the parameter � is
very different. Since the short rate is nonnegative the impact of � is asymmetric. A
higher value will increase the probability of seeing higher values of r which leads
to a lower bond price. The derivative with respect to � is given by

@B fBm
� ð0, TÞ
@�

¼ �kzdðDð�, TÞ1[0, T], vÞ1[0,T]ð�Þk2 � B fBm
� ð0,TÞ,

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
k = 0 →

k = 2.25 →

d = 0

B
(0

,T
)

T

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

← k = 0

k = 2.25 →

d = 0.25

B
(0

,T
)

T

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
k = 0 →

k = 2.25 →

d = 0.1

B
(0

,T
)

T

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

← k = 0

k = 2.25 →

d = 0.45
B

(0
,T

)

T

Fig. 6. Bond prices BPoið0, TÞ in the fractional Poisson model for varying k, maturity T and fractional
parameter d, using constant coefficients rð0Þ ¼ 0:1, a ¼ 4, � ¼ 1 and � ¼ 1. In particular k increases
by steps of size 0.25 from 0 to 2.25.
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@BPoi
� ð0,TÞ
@�

¼ ��
Z T

0
zdðDð�,TÞ1[0, T], vÞÞ

� expð��zdðDð�, TÞ1[0, T], vÞdv � BPoi
� ð0, TÞ,

where we used the classical rule for differentiation under the integral sign in the
fractional Poisson case.

4.5. Parameter sensitivity with respect to �

As can be seen in Fig. 9 the impact of the Poisson parameter � is always
monotone: higher values of � lead to lower bond prices. The reason is that with
increasing � the fractional Poisson subordinator driving the short rate process will
have a higher upward drift. The derivative with respect to � is given by

@BPoi
� ð0, TÞ
@�

¼
Z T

0
expð��zdðDð�,TÞ1[0, T], vÞdv � BPoi

� ð0,TÞ:
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Fig. 7. Bond prices B fBmð0, TÞ in the fractional Brownian model for varying �, maturity T and
fractional parameter d, using constant coefficients rð0Þ ¼ 0:1, a ¼ 4 and k ¼ 1. d ¼ 0 corresponds to
the classical Brownian Vasicek model. In particular � increases by steps of size 0.25 from 0 to 2.25.
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5. Pricing Credit Default Swaps

A CDS is a bilateral contract that ensures compensation payment to a protection
buyer in the case that the underlying entity defaults. In turn, the so-called pro-
tection seller receives a contractually fixed premium up to expiry or default. The
payments made by the protection buyer are aggregated to the premium leg,
whereas payments effected by the protection seller are part of the protection leg.
For simplicity, we assume the notional of the contract to be one unit of money and
focus on a running CDS contract with postponed payments. Thus, in the case of
default at � , Ti�1 < � � Ti, i 2 f1, . . . ,mg, the compensation payment is un-
wound at Ti. The sequence ðTiÞi¼1,...,m refers to the schedule of the coupon or
spread payments. The amount of these payments equals 
iR, where R symbolizes
the spread rate and 
i :¼ Ti � Ti�1. For example, if ðTiÞi¼0,...,m represents a grid
with a uniform distance of three months, then 
i always equals 3=12. In the case of
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Fig. 8. Bond prices BPoið0,TÞ in the fractional Poisson model for varying �, maturity T and frac-
tional parameter d, using constant coefficients rð0Þ ¼ 0:1, a ¼ 4, k ¼ 1 and � ¼ 1. In particular �
increases by steps of size 0.25 from 0 to 2.25.
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default, the protection seller has to pay the amount L to the protection buyer.
Generally, this amount appears to be stochastic, but for reasons of simplicity it can
also take a fixed value. Here, we proceed this way.

5.1. Pricing theorem

For better readability and understanding we will now describe the general approach
to CDS pricing, cf. Filipovic (2009), Sch€onbucher (2003) or Brigo and Mercurio
(2001) for details. From the perspective of a protection seller, the discounted
payoff of a CDS contract at time t, 0 � t � Tm ¼ T �, is given by

�ðtÞ :¼
Xm
i¼1

e�
R Ti

t
rðsÞds
iR � 1f�>Tig �

Xm
i¼1

e�
R Ti

t
rðsÞdsL � 1fTi�1<��Tig ð5:1Þ

as stated in Eq. (21.13) of Brigo and Mercurio (2001). The value of the CDS
contract can now be calculated as the expectation under the pricing measure Q
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Fig. 9. Bond prices BPoið0,TÞ in the fractional Poisson model for varying �, maturity T and frac-
tional parameter d, using constant coefficients rð0Þ ¼ 0:1, a ¼ 4 and k ¼ 1. In particular � increases
by steps of size 0.25 from 0 to 2.25.
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because it is a F T �-measurable, integrable claim. Since its current value at time t is
denoted by CDSðt,R, LÞ, we set

CDSðt,R,LÞ ¼ E[�ðtÞ j F t]:

Similar to Sec. 4.3, where we priced a (defaultable) zero coupon bond, we can
apply Proposition 3.1 of Lando (1998) or the principle of Lemma 13.2 of Filipovic
(2009), which implies that for a F T �-measurable, integrable claim X we have the
equality

E[XjF t] ¼ 1f�>tg
E[XjGt]

Qð� > tjGtÞ
ð5:2Þ

with 0 � t � T �. In particular, for 0 � t � T � T � and

X ¼ e�
R T

t
rðsÞds1f�>Tg

i.e. the case of a defaultable zero coupon bond, we obtain

E[e�
R T

t
rðsÞds1f�>Tg j F t] ¼ 1f�>tg

E[e�
R T

t
rðsÞds1f�>Tg j Gt]

Qð� > tjGtÞ
¼ 1f�>tgE[e

�
R T

t
[rðsÞþ�ðsÞ]dsjGt] ¼ �Bðt,TÞ:

Using Eq. (5.2), the value of the CDS contract with respect to the �-algebra Gt can be
rewritten as follows:

CDSðt,R,LÞ ¼ E[�ðtÞjF t] ¼ 1f�>tg
E[�ðtÞjGt]
Qð� > tjGtÞ

, 0 � t � Tm:

In the next step, we use the linearity of the conditional expectation to calculate

CDSðt,R, LÞ ¼ 1f�>tg
E[�ðtÞ j Gt]
Qð� > t j GtÞ

¼ 1f�>tg
1

Qð� > tjGtÞ
Xm
i¼1


iR � E[e�
R Ti

t
rðsÞds1f�>Tig j Gt]

(

�
Xm
i¼1

L � E[e�
R Ti

t
rðsÞds1fTi�1<��Tig j Gt]

)

¼ 1f�>tg R �
Xm
i¼1


i
E[e�

R Ti

t
rðsÞds1f�>Tig j Gt]

Qð� > t j GtÞ

8<
:

�L �
Xm
i¼1

E[e�
R Ti

t
rðsÞds1fTi�1<��Tig j Gt]

Qð� > t j GtÞ

9=
;
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¼ R �
Xm
i¼1


i �Bðt, TiÞ � 1f�>tgL �
Xm
i¼1

E[e�
R Ti

t
rðsÞds1fTi�1<��Tig j Gt]

Qð� > tjGtÞ
:

ð5:3Þ
However, the conditional expectation

E[e�
R Ti

t
rðsÞds1fTi�1<��Tig j Gt]

is difficult to determine, due to characteristics of the embedded default indicator
function. Therefore, we apply

1fTi�1<��Tig ¼ 1� 1f�>Tig � 1f��Ti�1g:

Hence, we get by setting Bðt, TiÞ :¼ E[e�
R Ti

t
rðsÞds j Gt]

1f�>tg
E[e�

R Ti

t
rðsÞds1fTi�1<��Tig j Gt]

Qð� > t j GtÞ

¼ 1f�>tg
E[e�

R Ti

t
rðsÞds j Gt]� E[e�

R Ti

t
rðsÞds1f�>Tig j Gt]� E[e�

R Ti

t
rðsÞds1f��Ti�1g j Gt]

Qð� > t j GtÞ

¼ 1f�>tge
R t

0
�ðsÞdsBðt, TiÞ � �Bðt, TiÞ � 1f�>tg

E[e�
R Ti

t
rðsÞds1f��Ti�1g j Gt]

Qð� > t j GtÞ
:

We wish to stress that these formulas also apply if t > Ti. Yet, in this case, the
quantities Bðt, TiÞ and �Bðt, TiÞ can no longer be interpreted as bond prices since
they do not reflect discounting but accruing interest in the following sense: Let
t > Ti and condition on the set f� > tg, then we have formally

Bðt, TiÞ ¼ E[e�
R Ti

t
rðsÞds j Gt] ¼ E[e

R t

Ti
rðsÞds j Gt] ¼ e

R t

Ti
rðsÞds

E[1jGt] ¼ e
R t

Ti
rðsÞds

and

�Bðt, TiÞ ¼ E[e�
R Ti

t
rðsÞds1f�>Tig j F t] ¼ E[e

R t

Ti
rðsÞds j F t] ¼ e

R t

Ti
rðsÞds

:

Finally, we obtain the following well-known pricing theorem:

Theorem 5.1. In the situation above, we have for 0 � t � Tm:

CDSðt,R, LÞ ¼
Xm
i¼1

[ð
iRþ LÞ �Bðt,TiÞ � 1f�>tgL � e
R t

0
�ðsÞdsBðt, TiÞ]

þ 1f�>tgL �
Xm
i¼1

E[e�
R Ti

t
rðsÞds1f��Ti�1g j Gt]

Qð� > t j GtÞ
: ð5:4Þ
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The first part of this formula can be computed easily. However, the term

E[e�
R Ti

t
rðsÞds1f��Ti�1g j Gt]

is more problematic since we do not have an explicit representation in terms of
bonds.

5.2. CDS rate process

As it is often market convention, the fixed rate R, which the protection buyer has to
pay, is chosen such that the value of the respective CDS contract is zero. Therefore,
we define the CDS rate process ðRðtÞÞ0�t�Tm by

CDSðt,RðtÞ, LÞ ¼ 0, 0 � t � Tm:

As an immediate consequence, we get

RðtÞ ¼ L �
Pm

i¼1fe
R t

0
�ðsÞdsfBðt, TiÞ � E[e�

R Ti

t
rðsÞds1f��Ti�1g j Gt]g � �Bðt, TiÞgPm

i¼1
i �Bðt,TiÞ

on the set f� > tg. Since the definition on f� � tg does not really matter, we can
also formally set it to the above expression. As mentioned, we do not have an
explicit representation for

E[e�
R Ti

t
rðsÞds1f��Ti�1g j Gt]

in our fractional credit market. A possible approach would be via simulation,
where we would simulate paths of the underlying MG-fLp and estimate the
conditional expectation given above. However, to obtain analytical expressions for
the characteristics of CDS rate term structures in our fractional setting, we assume
independence of short rate and default time from one another. This is equivalent to
the assumption of independent short and hazard rate processes. Hence, we proceed
similarly to Jarrow et al. (1997) and Jarrow and Turnbull (1995), who assumed
that the stochastic process for the default-free interest rate and the intensity-based
bankruptcy process are stochastically independent under the chosen risk-neutral
measure. The latter process is represented by the stochastic variable � that denotes
the random time at which bankruptcy occurs. Jarrow et al. (1997), as well as
Jarrow and Turnbull (1995), also justified their line of action by the fact that this
approach entails a simplified analysis and the capability of deriving further
(numerical) results. Moreover, they claimed that under certain conditions this
assumption also implies independence among the corresponding real-world
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(physical) quantities. We use the proposed independence assumption to calculate
further:

E[e�
R Ti

t
rðsÞds1f��Ti�1g j Gt] ¼ E[e�

R Ti

t
rðsÞds j Gt] � E[1f��Ti�1g j Gt]

¼ Bðt, TiÞE[1� 1f�>Ti�1g j Gt]

¼ Bðt, TiÞf1� E[e�
R Ti�1

t
�ðsÞds j Gt]e

�
R t

0
�ðsÞdsg:

Define for 0 � t � T � T �

Hðt, TÞ :¼ E[e�
R T

t
�ðsÞds j Gt]:

As a result, we get

RðtÞ ¼ L �
Pm

i¼1fe
R t

0
�ðsÞdsfBðt,TiÞ � Bðt,TiÞ[1�Hðt,Ti�1Þe�

R t

0
�ðsÞds]g � �Bðt,TiÞgPm

i¼1
i �Bðt,TiÞ
:

Moreover, the price of a defaultable bond decomposes via

�Bðt, TÞ ¼ 1f�>tgE[e
�
R T

t
[rðsÞþ�ðsÞ]ds j Gt]

¼ 1f�>tgE[e
�
R T

t
rðsÞds j Gt] � E[e�

R T

t
�ðsÞds j Gt]

¼ 1f�>tgBðt, TÞ � Hðt, TÞ:

Connecting these results, we obtain for today's CDS rate

Rð0Þ ¼ L �
Pm

i¼1fBð0,TiÞ � Bð0,TiÞ[1� Hð0,Ti�1Þ]� �Bð0,TiÞgPm
i¼1
i �Bð0,TiÞ

¼ L �
Pm

i¼1Bð0, TiÞ[Hð0,Ti�1Þ � Hð0,TiÞ]Pm
i¼1
iBð0,TiÞHð0, TiÞ

: ð5:5Þ

5.3. Term structure analysis

To determine CDS rate term structures, we apply Theorem 3.4 and, by way of
example, focus on the fractional Brownian and the fractional Poisson credit
market. We assume constant coefficient functions and set furthermore � ¼ ð1, 0Þ>
and 	 ¼ ð0, 1Þ>. Moreover, we impose the following restrictions:

a11, a22, k1, k2,�11,�22 > 0 and a12 ¼ a21 ¼ �12 ¼ �21 ¼ 0:
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Example 5.2. [Fractional Brownian market with credit risk] For d ¼ 2, let Ld

be a fractional Brownian motion with independent marginal processes. Thus, we
can calculate

Hð0,TÞ ¼ E[e�
R T

0
�ðsÞds]

¼ exp �D22ð0,TÞ�ð0Þ � k2

Z T

0
D22ðv,TÞdv

�

þ �2
22

2
k zdð2ÞðD22ð�, TÞ1[0, T], vÞ1[0,T]ð�Þk2

�
:

In the fractional Brownian setup, stochastic changes happen symmetrically. Yet,
the exponential function of the bond pricing formula (3.3) gives more weight to an
increment of the negative input argument than to a decrement. This asymmetry
emerges all the more, the more variability a fractional Brownian motion exhibits. As
can be immediately seen from Proposition 2.5, the variance of a fractional L�evy
process enlarges as the fractional parameter scales up. Due to the independence
assumption, the effects of varying dð1Þ and dð2Þ can be discussed separately. In-
creasing the fractional parameter dð2Þ entails an amplified variance of the associated
fractional Brownian motion and therefore also of the mean-reverting process de-
scribing �. Hence, the cited asymmetry caused by the exponential function gets a
greater impact. Keeping in mind that there is no risk sensitivity under the risk-
neutral measure, the spread rate has to decrease as a consequence of the lower threat
of default. This is depicted by Fig. 11. It is also shown that in the extreme case of
dð2Þ ¼ 0:45 the CDS rate curve declines after a certain period of time.

However, in line with Sarig and Warga (1989), humped spread curves are
typical for CDS contracts with non-investment grade underlyings and also can be
reproduced by our fractional Brownian model.

Concerning the effects of varying dð1Þ, we have to briefly review the properties
of a CDS contract. Under the assumption of an investment grade underlying,
expected premium payments only decrease very slowly and, in the limit, can be
regarded as constant. By contrast, expected protection payments initially are
vanishingly low but rise over the long run. Similar to the hazard rate, increasing
the parameter dð1Þ in the fractional Brownian setting entails an amplified
weighting of states characterized by a low or even negative short rate. As a
consequence, the high values of expected protection payments near to maturity get
a greater impact, and hence, as shown in Fig. 10, spread rates increase.

Example 5.3. [Fractional Poisson credit market]. Assume an underlying
bivariate Poisson MG-fLp with independent marginal processes and jump
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intensities �1 and �2. At first glance, it might be confusing that CDS rate curves in
the Brownian and the Poisson setting reveal contrary patterns. This, however, can be
ascribed to the very different characteristics of the processes controlling the interest
as well as the hazard rate (cf. Sec. 4). In the fractional Poisson credit market, the
driving processes are almost surely increasing, and therefore, in general, only
positive movements are incited by the stochastic part of the mean reversion process.
In contrast to the Brownian case, the mean reversion level marks a lower boundary
for the modeled quantity. Increasing the fractional parameter means increasing the
variance and thus, on average, a higher level of short as well as hazard rates can be
observed. As stated above, higher hazard rates imply a heightened probability of
default, which in turn causes a rising spread rate. Higher short rates put less weight
on protection payments usually getting significant at the end of maturity.
Consequently, the spread rate of the default swap contract declines. Figures 12
and 13 visualize the corresponding CDS rate term structures.

5.4. Term-structure calibration

At the end of this section, we want to fit our model-implied CDS term structure to
real market data. Therefore we obtained end-of-day CDS rates for various
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Fig. 10. CDS rate Rð0Þ with quarterly payments, i.e. 
i ¼ 0:25, in the fractional Brownian market
(Example 5.2) for varying dð1Þ and maturity Tm, using constant coefficients a11 ¼ 0.01, a22 ¼ 0.02,
k1 ¼ 0.0025, k2 ¼ 0.05, �11 ¼ 0:1, �22 ¼ 0:075, ðrð0Þ,�ð0ÞÞ> ¼ ð0:01, 0:005Þ> and dð2Þ ¼ 0:25.
The sharp increasing graph (dð1Þ ¼ 0:45) is explained due to the fact that short and default rate are
negative with positive probability.
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Fig. 12. CDS rate Rð0Þ with quarterly payments, i.e. 
i ¼ 0:25, in the fractional Poisson market
(Example 5.3) for varying dð1Þ and maturity Tm, using constant coefficients a11 ¼ 0.01, a22 ¼ 0.02,
k1 ¼ 0.0025, k2 ¼ 0.05,�11 ¼ 0:1,�22 ¼ 0:075, ð�1, �2Þ> ¼ ð3, 3Þ>, ðrð0Þ,�ð0ÞÞ> ¼ ð0:01, 0:005Þ>
and dð2Þ ¼ 0:25.
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Fig. 11. CDS rate Rð0Þ with quarterly payments, i.e. 
i ¼ 0:25, in the fractional Brownian market
(Example 5.2) for varying dð2Þ and maturity Tm, using constant coefficients a11 ¼ 0.01, a22 ¼ 0.02,
k1 ¼ 0.0025, k2 ¼ 0.05, �11 ¼ 0:1, �22 ¼ 0:075, ðrð0Þ,�ð0ÞÞ> ¼ ð0:01, 0:005Þ> and dð1Þ ¼ 0:25.
The graph for dð2Þ ¼ 0:45 is explained due to the fact that short and default rate are negative with
positive possibility. However a CDS curve that suddenly declines again after a certain time is often
observed in real market data. Therefore the potential negative hazard rate might actually be very useful
in obtaining realistic market models.
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constituents of the German stock index DAX and several maturities on 1 October
2014 using Thompson Reuters Datastream. These are shown in Fig. 14. Given the
fact that short-term riskless rates in the Eurozone are currently slightly negative,
we choose the fractional Brownian setting. Parameters are obtained by a least
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Fig. 13. CDS rate Rð0Þ with quarterly payments, i.e. 
i ¼ 0:25, in the fractional Poisson market
(Example 5.3) for varying dð2Þ and maturity Tm, using constant coefficients a11 ¼ 0.01, a22 ¼ 0.02,
k1 ¼ 0.0025, k2 ¼ 0.05, �11 ¼ 0:1, �22 ¼ 0:075, ð�1, �2Þ> ¼ ð3, 3Þ>, ðrð0Þ,�ð0ÞÞ> ¼ ð0:01, 0:005Þ>
and dð1Þ ¼ 0:25.
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Fig. 14. CDS rates in basis points for various maturities and underlyings from the German DAX
index on 1 October 2014. Source: Thomson Reuters Datastream.
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Table 1. Least square calibration of model parameters in the Brownian setups
using Eq. (5.5). Non-defaultable zero bond prices were obtained via the respective
ECB AAA average bond yields from Thompson Reuters Datastream.

Underlying and Parameters Brownian Market Fractional Brownian Market

BMWG.DE �ð0Þ �0.0005 �0.0002
a22 0.2942 0.0977
k2 0.0030 0.0024
�22 2:2081 � 10�08 0.0080
dð2Þ ��� 0.2392

Sum of Squared Errors 2:3027 � 10�06 1:2364 � 10�06

VOWG_p.DE �ð0Þ �0.0002 0.0001
a22 0.3154 0.1054
k2 0.0035 0.0028
�22 1:5212 � 10�08 0.0095
dð2Þ ��� 0.2187

Sum of Squared Errors 2:4721 � 10�06 1:2728 � 10�06

DBKGn.DE �ð0Þ 0.0011 0.0014
a22 0.3338 0.1160
k2 0.0043 0.0033
�22 1:5232 � 10�08 0.0128
dð2Þ ��� 0.1524

Sum of Squared Errors 1:2107 � 10�06 4:9681 � 10�07

CBKG.DE �ð0Þ 0.0011 0.0015
a22 0.3217 0.1132
k2 0.0053 0.0041
�22 1:4145 � 10�08 0.0141
dð2Þ ��� 0.1545

Sum of Squared Errors 1:4811 � 10�06 4:9718 � 10�07

BASFn.DE �ð0Þ �0.0004 �0.0002
a22 0.2259 0.0728
k2 0.0025 0.0021
�22 1:8582 � 10�08 0.0064
dð2Þ ��� 0.2490

Sum of Squared Errors 1:9437 � 10�06 1:1641 � 10�06

ECB AAA-bonds rð0Þ �0.0118 �0.0060
a11 0.2301 0.0107
k1 0.0057 0.0036
�11 8:0033 � 10�9 0.0066
dð1Þ ��� 0.2489

Sum of Squared Errors 7:7897 � 10�4 4:3127 � 10�5
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square calibration ��� additionally, this procedure is carried out for the special case
dð1Þ ¼ dð2Þ ¼ 0 representing the classical non-fractional setup. For simplicity, a
day count convention of 30/360 and quarterly payments were assumed for the
CDS contract specifications. The results can be found in Table 1. Considering the
sum of squared errors, the fractional setting seems to be better fitting to the data as
the classical one. We want to stress that this should be considered a first look as a
more detailed empirical study is beyond the scope of this paper. However, our
findings seem to further support theories of long memory in hazard rates.

6. Conclusion

We used fractional L�evy processes defined via convolution of classical L�evy pro-
cesses with independent increments and Molchan–Golosov kernels, leading to
models that are able to capture long range dependence. Applying known results about
fractional credit markets, we carried out a detailed sensitivity analysis of fractional
bond prices in a fractional Brownian and a fractional Poisson setting. We calculated
the derivatives with respect to the individual parameters which can be interpreted as a
kind of sensitivity measure similar to the greeks in the classical Black-Scholes
market. Afterwards we considered the pricing of CDS contracts and derived an
explicit formula for the CDS rate. In the end, we were able to calculate rates for
various maturities in a fractional Brownian and a fractional Poisson market and to
analyze the impact of potential long range dependence. Furthermore, we carried out a
brief empirical study to compare the fit in the fractional setting to the one in the
classical models. Our findings here seem to strengthen conjectures of longmemory in
default rates, although a more thorough analysis should be the aim of future research.
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