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Is Diversification Possible with CDOs?

Promises and Fallacies of an Investment Class

Abstract

Diversification has been a frequently stated benefit of structured
securitizations. However, in the course of the subprime credit crisis
CDOs and especially ABS CDOs turned out to be risk concentrations.
In this article, we show that pool derivatives indeed imply diversifica-
tion, however, not necessarily for the investor’s benefit. We examine
the risk profiles of CDO tranches as well as their risk contributions
to investor portfolios. We find that irrespective of any pool diver-
sification the resulting tranches have always significantly higher risk
concentrations than comparable bonds. Finally, based on the analy-
sis of common structuring patterns, we conclude that it is much more
difficult to achieve the same level of risk in a tranche portfolio as in a
bond portfolio, even if the collateral universe is much larger than the
corporate or sovereign bond universe.
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1 Introduction

The enormous growth of structured finance markets is due to a series of
seemingly obvious benefits of products like CDOs (e.g. Kiff et al. 2004,
Partnoy & Skeel 2007, Bluhm & Overbeck 2007).

On the one hand, financial institutions were attracted by (1) arbitrage
opportunities and commission income, (2) diversification potentials and (3)
more profitable risk allocations. Investors, on the other hand, (1) found ade-
quate supply for their rating-specific demand, (2) could earn higher spreads
than with conventional bonds, and (3) finally were pleased to be invested
in ostensibly highly diversified collateral pools. Finally, regulators saw in
securitization the potential of greater spread of risks and thus more systemic
stability. For example, in an early 2007 report Kiff & Mills (2007) state that
despite looming subprime problems “[. . . ] [t]he dispersion of credit risk to a
broader group of investors has nevertheless helped to make the U.S. financial
system more resilient.” With hindsight this claim turns out to be wrong.

The financial crisis brought home to us that some of these promises were
temporarily or permanently false. One pending issue is the appropriate
pricing of CDOs as compared with other asset markets and as measured
by systematic risk (Eckner 2008, Coval et al. 2009b,a, Brennan et al. 2009).
Another open issue is diversification. To cite Cohen & Remolona (2008):
“[. . . ] it is still puzzling how instruments that were designed to spread and
diversify risks ended up concentrating the risks.”.

Investment banks, investors, and regulators have different views on the
diversification benefits of CDOs. Arrangers of CDOs try to diversify their
collateral pools by collecting assets from diverse sectors, countries or re-
gions (McDermott 2001). We call this “factor diversification”. They also
diversify risks by pooling several assets and thus reduce the magnitude of
idiosyncratic risks. We call this “name diversification”. Banks seem to have
two motivations for that. First, it was a value proposition when selling CDO
tranches. Since the latter were deemed as “less risky” if the underlying pools
were diversified a pool with higher, say, diversity score1 (this is a measure
of diversity created by Moody’s) was most likely easier to sell. Second, a
pool with low concentration risk and high diversity score, respectively, has
a loss distribution with a much lighter tail. This in turn implies a larger
portion of senior liabilities and thus lower costs of funding. A prerequisite

1The diversity score is to adapt a binomial distribution to the tail shape of a Vasicek
distribution with corresponding correlation. The higher the concentration, the lower the
score. For example, if in a pool with ten assets all are from the same issuer then the
diversity score equals unity (highest score, lowest diversification). If all come from different
issuers but from the same sector then the diversity score equals 3.98. Finally, if all ten
assets are from different sectors, then the diversity score equals 10. The diversity score
is used in Moody’s Binomial Expansion Technique (BET) as well as for Correlated BET.
In the former case, the score is determined based on industry classification. The latter is
developed for more complex assets and relies on an explicit correlation assumption.
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for this, however, is a good rating (e.g., triple A) by one of the credit rating
agencies (CRA). CRAs include concentration risk measures in their valua-
tion models. For instance, in their Binomial Expansion Technique (BET)
Moody’s use the diversity score. In general, concentrations are included via
a hierarchical (e.g., intra-industry and inter-industry) correlation structure.

Investors, by contrast, seem to have a different view on diversification.
On the one hand, it appears that if the pool backing a CDO tranche is
diversified the tranche itself is “diversified” (i.e., less risky), too. That is,
if the pool is diversified, the resulting tranches contribute less to any con-
centration risks in the investor portfolio. To cite from a report of Nomura
(2004): “[. . . ] A CDO sponsor tries to create value by assembling a well-
diversified portfolio of assets to back its CDO. In principle, diversification
within a CDO’s portfolio can make it stronger than merely the sum of its
parts. [. . . ]” On the other hand, investors see a diversification benefit of
CDOs in the wealth of possible collateral types. Indeed, the universe of
claims that can be securitized appears much larger than, that of corporate
bonds or treasury bills. Thus, it appears beneficial to invest in different
tranches backed by collateral pools with as little correlation as possible.

Finally, regulatory authorities see the diversification benefits of securi-
tizations in a reduction of systemic risk. For example, a recent report of
the International Monetary Fund (IMF 2008) states that “[. . . ] Structured
finance can be beneficial, allowing risks to be spread across a larger group of
investors, [. . . ].” In other words, securitization admits new investor groups
to gain exposure to previously inaccessible asset classes. As a result, risk
concentrations on a small subset of institutions decreases and the stability
of the financial system increases.

There have been hardly any scientific contributions on diversification
benefits and concentration dangers associated with CDOs in the past. Only
gradually, as a reaction to the subprime crisis, more comments can be found
pointing to the issue (Fitch 2008, 2009, Donhauser et al. 2010). A related
topic which is also discussed only poorly in the literature until the begin-
ning of the crisis is the specific systematic risk sensitivity of structured credit
products. Per construction, CDO tranches have leveraged systematic risks
(e.g. Donhauser et al. 2010, Jobst 2005, IMF 2008, Coval et al. 2009a, Bren-
nan et al. 2009, Hu 2007) which in turn implies concentration risks in a
portfolio.

One of the big topics in the structured credit literature associated with
concentration risk was correlation. However, it was mainly the market-
implied correlations that were of interest, not fundamental correlations.
These market correlations were used as indicators of the market’s expec-
tations concerning default clustering. They are only available for liquidly
traded derivatives like credit index tranches. Most cash-flow structured
credit products, however, are secondary market products where no market
prices do exist.
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To summarize, our article gives answers to the following pressing ques-
tions:

1. How does asset pool composition (e.g., with ABS or ABS CDOs) trans-
late into liabilities with predefined ratings?

2. How successful is diversification in view of the resulting tranches’
stand-alone risk measures?

3. How do bond portfolios and tranche portfolios differ in terms of risk?

The rest of the article is organized as follows. In the next section we
first outline a multi-factor collateral pool and tranche loss model and pro-
vide a variance-based measure of systematic risk which is applicable in this
setting. Then, in Section 3, we fix a rating structure for the liabilities of
the CDO and study the effect of various diversification actions on (1) the
size of the resulting tranches and (2) relevant risk measures of the tranches.
We draw comparisons with conventional fixed-income assets like bonds or
pass-through securities. In Section 4 the risk and diversification benefits
of bond portfolios and tranche portfolios are compared from an investor’s
point of view. In a concluding section, we relate our findings to phenomena
of the subprime credit crisis.

2 Systematic Risk, Concentration Risk, and Di-
versification in Multi-Factor Model

In this section we define a CDO collateral pool and tranche loss model.
Furthermore, we define statistics to measure and compare the systematic
risk inherent in the tranches. In a single factor model the factor loading can
be directly used as a measure. Not so, however, when multiple factors do
exist.

2.1 Asset Pool and Tranche Loss Model

The asset pool comprises I defaultable securities. The creditworthiness of
each of these loans, bonds or tranches i ∈ {1, . . . , I} is represented by an
asset value variable

Ri =
√

ρiMj +
√

1− ρiUi

where Mj , j ∈ {1, . . . , J}, is a systmatic risk factor and Ui is an idiosyncratic
(i.e., obligor-specific) factor. Both are standard normal. Each latent factor
Mj depends on a common background factor M

Mj =
√

ωjM +
√

1− ωjWj

This establishes dependencies among the systematic factors.
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Usually, some names in the pool load on the same factor Mj . Thus, the
pool contains n non-overlapping homogeneous subgroups ij ⊆ {1, . . . , I},
i.e., any obligor belongs to exactly one subgroup j and ij denotes the index
set of obligors belonging to subgroup j. All obligors in the same subgroup
load on the same factor Mj .

Now given these asset value variables, obligor i’s default is defined as the
event that Ri falls short of a threshold ci

Ri < ci (1)

which is calibrated to imply the obligor’s PD. That is,

λi = P[Ri < ci]

and
ci = Φ−1(λi)

The portfolio loss is the weighted sum of these random default indicators,
i.e.,

L =
∑

i

Li

=
∑

i

wi1{Ri<ci}LGDi

(2)

where wi denotes the notional weight of asset i, 1{.} is an indicator
function, and LGDi is obligor i’s loss given default.

The liability part of a CDO is structured into horizontal loss tranches.
“Horizontal” means of different seniority. The loss of tranche 0 ≤ A(tr) <
B(tr) ≤ 1 is given by

L(tr) =
min(B(tr), L)−min(A(tr), L)

B(tr) −A(tr)
(3)

Thus, for L ≤ A(tr) tranche tr does not incur losses and it is completely lost
for L ≥ B(tr).

Furthermore, the opposite of a horizontal slice (tranche) is a vertical
slice of the portfolio. Vertical slices offer no seniority differences, i.e., each
slice obtains its notional share of the total portfolio loss L. We refer to such
vertical slices as “portfolio investments” or “pass-through securties”.

2.2 Concentration Risk and Diversification

In the Basel II capital convergence rules (BIS 2006, §770) concentration risk
is defined as “[. . . ] any single exposure or group of exposures with the po-
tential to produce losses large enough (relative to bank’s capital, total assets
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or overall risk level) to threaten a bank’s health or ability to maintain its
core operations.” In §772 it is further related to risk factors: “Credit risk
concentrations, by their nature, are based on common or correlated risk fac-
tors, which, in times of stress, have an adverse effect on the creditworthiness
of each of the individual counterparties making up the concentration.”

Thus, default of large portfolio fractions is more likely in the presence of

1. Name Concentration

2. Factor Concentration

(a) “between factors”

(b) “within factors”

Name concentration or exposure concentration refers to portfolio posi-
tions with large exposure so that their default represents a large fraction of
the whole portfolio. Factor concentration is characterized by high potential
of large losses due to either simultaneous default of many pool positions or
simultaneous default of obligors with high LGDs. These collective effects
are caused by common factors which influence the default behavior of many
obligors simultaneously and similarly. Factors often differ in terms of region
or industry. Another difference has to be made between factor load and fac-
tor dependence. On the one hand, there may be concentrations on certain
factors, i.e., major proportions of the loss mass2 is concentrated on some
factors (e.g., when 90% of the portfolio positions are related to the auto-
mobile sector we have a case of sector concentration). On the other hand,
factor concentrations may also exist in terms of stress concentration, i.e.,
how strong the portfolio loss mass is restricted to adverse factor scenarios.
For example, we shall see below that structured finance products are par-
ticularly stress scenario concentrated, i.e., in good times their default risk is
almost zero while it may increase rapidly in very bad times.

Now, reducing name or factor concentrations is called “diversification”.
By putting the exposures of a portfolio on diverse risky obligors or factors
reduces the total risk.

In the literature there is sometimes another type of concentration risk
called “contagion risk” which refers to default or loss cascades among oblig-
ors, i.e., default of one obligor causes another to default. In a factor repre-
sentation this means that one obligor is a risk factor to another and thus we
consider this as a special case of factor concentration.

In order to measure concentration risk within the context of CDOs a
statistic with two properties is necessary. First, it needs to be interpretable
as a stand-alone measure so that our results are more generalizable. Stand-
alone risk measures should indicate the potential concentration risk of an

2We define “loss mass” as the probability mass of E
[
L | (Mj)

J
j=1

]
.
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asset instead of its concrete risk contribution within a specific portfolio.
Second, because of mass singularities with CDO loss distributions we seek
a non-quantile-based measure3.

We use the classical variance here since it is easy to calculate and does
not require fixing a quantile. Furthermore, the variance has a well-known de-
composition in systematic and unsystematic parts (“law of total variance”):

V[L] = E
[
V

[
L | (Mj)J

j=1

]]
︸ ︷︷ ︸

mean unsystematic variance

+V
[
E

[
L | (Mj)J

j=1

]]
︸ ︷︷ ︸

systematic variance

(4)

i.e., the mean variance about conditional expected loss (CEL) plus the vari-
ance of conditional expected loss.

We are interested in the second, the systematic component which is
primarily responsible for the tails of the overall loss distribution. However,
although V

[
E

[
L | (Mj)J

j=1

]]
lends itself to compare loss variables with the

same expectation, it is difficult to interpret in absolute terms and thus to
compare with it investments with different expected loss. To that end, we
relate it to the maximum variance, i.e., we define

σ̃ =
V

[
E

[
L | (Mj)J

j=1

]]

V
[
E

[
L | (Mj)J

j=1

]
max

] (5)

where E
[
L | (Mj)J

j=1

]
max

denotes a random variable relating to a con-
ditional expected loss distribution with maximum variance, i.e., a two point
distribution with all mass exclusively distributed on zero and the maximum
possible loss of L, denoted by LGD. We call σ̃ “normalized conditional ex-
pected loss (CEL) variance”. For the distribution of E

[
L | (Mj)J

j=1

]
max

we
impose the restriction that the two support end points are zero and LGD,
respectively, and furthermore that

E
[
E

[
L | (Mj)J

j=1

]
max

]
= E

[
E

[
L | (Mj)J

j=1

]]
= E[L] (6)

Thus,

E
[
E

[
L | (Mj)J

j=1

]
max

]
= p̃ · LGD = E[L] (7)

3Quantile-based risk measures may be problematic with CDOs because of their typ-
ically possessing mass singularities at either of the support end points. As a result, all
tranches except for the most senior one have a mass point at 100% which in turn makes
tail risk measures (like value at risk, expected shortfall, etc.) insensitive at higher quantile
levels.
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where p̃ denotes the probability mass on LGD. The rest of the mass, 1− p̃,
is on zero. As a result, we obtain

p̃ =
E[L]
LGD

(8)

Now the maximum variance can be calculated

V
[
E

[
L | (Mj)J

j=1

]
max

]
= 0 · (1− p̃) + LGD2p̃− E[L]2

= LGD2 · E[L]
LGD

− E[L]2

= LGD · E[L]− E[L]2

(9)

Our relative variance coefficient (5) approaches unity as E
[
L | (Mj)J

j=1

]

converges to a “one-zero” jump function and it approaches zero the closer
the profile to a straight line about expected loss. We show this for the special
case of the Gaussian single risk factor model in Appendix B.

3 Concentration Risk and Diversification with ABS
and CDOs

As outlined above, tranched securitizations like ABS or CDOs have been
appreciated for their diversification potential. Nevertheless, the recent sub-
prime debacle has showed clear patterns of concentration risk. This raises
the following questions

1. How does asset pool composition (e.g., with ABS or ABS CDOs) trans-
late into liabilities (subordination, width) with predefined ratings?

2. How successful is diversification in view of the resulting tranches’
stand-alone risk measures?

3. How do bond portfolios and tranche portfolios differ in terms of risk?

We shall answer these questions now.

3.1 Asset Pool Diversification Patterns

In a first step, we explain historically observed asset pool concentration and
diversification patterns. Above, we distinguished name diversification and
factor diversification. ABS asset pools are frequently highly name diversi-
fied. This is due to the size of asset pools which may be as high as several
thousand names. However, there are also small asset pools, typically those
of CDOs, with only one hundred or less names. We study both extremes by
variation of the pool size, N .
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In our model, systematic risk is due to common factors such as industrial
or regional factors. The lower the overall load of the obligors in a pool on
the same factor the lower their covariation. Now, an arranger has two major
options to “diversify” risks. On the one hand, he may collect assets with
high idiosyncratic loadings and low common factor loadings. On the other
hand, he may collect assets loading on factors which are as independent
as possible. In our model this corresponds to the levels of intra-factor and
inter-factor correlation, ρ and ω.

Asset managers commonly try to reduce systematic risks (e.g., increase
the diversity score4) in order to get better ratings for the liabilities to be
marketed (e.g. Nomura 2004, Lucas et al. 2006) or conversely to create a
larger proportion of high grade assets. Asset pools with high systematic
risk require much more credit enhancements for AAA tranches and are thus
less attractive in arbitrage terms. Investors, on the other hand, are also
interested in assets with low systematic risk or they require additional pre-
mium. This means that both parts seem to be interested in low levels of ρ
and ω. But in reality this target was often not achieved.

For example, during the golden years of subprime securitization (i.e.,
2005 to early 2007) the issuance volume of ABS CDOs (i.e., CDOs with
ABS collateral) grew considerably. Now, previous research has revealed
that tranching always implies increased systematic risk sensitivity (e.g. Don-
hauser et al. 2010) which in turn implies that the collateral pools of ABS
CDOs had high systematic risk sensitivity, i.e., the assets had high ρ. On
the other hand, the assets of ABS CDOs were RMBS which were regionally
diversified in the U.S. But obviously, this had no significant diversification
effect. As a result, inter-factor correlation was high, too.

To summarize, in the past we have observed pools with high or low N ,
high or low ρ, and high or low ω. Table 1 states examples of securitization
asset pools with different degree of diversification.

low high

Intra-Sector Correlation ρ Credit Card ABS ABS CDO
Inter-Sector Correlation ω Multi-Sector CDO U.S. Subprime RMBS

Portfolio Size N CDO ABS

Table 1: Examples of securitization asset pools with different degree of diver-
sification.

CDO asset pools are typically small (N = 100) while ABS pools may
become very large (N > 1000). Corporate CDOs or multi-sector CDOs
are backed by assets from diverse sectors while 2005-2007 U.S. subprime
RMBS have homogeneous pools from a housing market with a strong com-

4The diversity score is a diversification measure developed and used by Moody’s.

11



mon factor5. Finally, credit card ABS or consumer ABS are less dependent
from common risk factors while ABS CDO collateral is highly factor con-
centrated. Note that while it is known that RMBS pools are homogeneous
und thus come from the same sector they seem to be deemed as having low
intra-sector correlations which lowers the overall concentration risk. The
same applies to ABS CDOs which have ABS collateral with high factor con-
centration but when the ABS come from diverse factors/sectors, the overall
concentration is again low.

3.2 Configuration

To answer the above questions we proceed as follows. We choose an asset
pool and fix a liability structure. The asset pool parameterization agrees
with one of the patterns in Table 1. The liabilities are only defined in terms
of their desired expected loss. The latter means that both tranche subor-
dination and tranche width are not prespecified but have to be determined
based on the expected loss requirements. Finally, we calculate stand-alone
tranche risk measures. We repeat this for all high/low combinations of N, ρ,
and ω, i.e., for eight asset pools altogether.

Asset Pool The asset pool is represented by the Gaussian factor model
as outlined above with two systematic factors M1 and M2 having correla-
tion

√
ω1 · ω2 = ω. To simplify things, we assume that the asset pool is

homogeneous in terms of PD, factor loading, LGD, and exposure weight,
i.e., λi = λ, ρi = ρ, LGDi = LGD, and wi = 1/N . We further assume that
half of the obligors loads on M1 (i.e., belongs to subgroup i1) and the other
half loads on M2 (i.e., belongs to subgroup i2).

Table 2 shows the set of pool setups which we are going to test. These
are concrete values consistent with Table 1.

General Parameters Symbol low high

Intra-Sector Correlation ρ 0.20 0.75
Inter-Sector Correlation ω 0.05 1.00

Portfolio Size N 100 1000

Table 2: Asset pool parameters.

ρ = 0.20 and ρ = 0.75 are to reflect conventional and securitization
claims, respectively. As extensively examined by Donhauser et al. (2010)
and also by Moody’s KMV (2008) representing a tranche as a loan in a
single factor model requires much higher asset correlations. Thus, an asset

5Historically, U.S. housing markets were local. However, in the years before the crisis
several factors have triggered a U.S. wide price increase.
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correlation of ρ = 0.75 is a typical level for mezzanine tranches6. ω = 0.05
and ω = 1.00 refer to asset pools with constituents coming from diverse and
a single sector, respectively. N = 100 and N = 1000 admit studying name
diversification. The two levels of PD and LGD correspond to 5-year Aaa
and Baa Moody’s corporate bond ratings (Moody’s 2009).

Capital Structure The desired capital structure based on expected loss
is given in Table 3. For the eight asset pool constellations we calculate a
senior and a mezzanine tranche having these EL levels.

Expected Loss

Senior (Aaa) 0.0002
Mezzanine (Baa) 0.0110

Table 3: Desired ratings of liabilities.

We took them from Moody’s (2009). All tranches are based on a pool
with homogeneous PD λ = 0.0189. For ρ = 0.20 the pool is assumed to be
comprised of bonds, hence we use the bond LGD of Moody’s, LGD = 0.582.
For ρ = 0.75 the pool is assumed to be comprised of mezzanine tranches
and hence we set LGD to unity. We use expected loss as a tranching criteria
which is the official Moody’s criterion. Our tests of hitting probability as
a tranching criterion brought no further insights and thus we do not report
those results here.

We compare the resulting tranches with bonds and pass-through secu-
rities having the same EL. The latter are backed by a pool of bonds. The
bond parameters are given in Table 4.

General Parameters Symbol Aaa Baa

PD λ 0.00088 0.0189
LGD LGD 0.227 0.582

EL EL 0.0002 0.0110

Table 4: Bond parameters.

3.3 Results

3.3.1 Capital structure

The resulting capital structures are given in Table 5. We see that lowering
ρ or ω, i.e., factor diversification, enlarges the senior tranche and shortens

6Senior tranches have usually lower implied correlations because of their lower leverage.
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the mezzanine tranche. When both ω and ρ are very high the AAA senior
proportion becomes extremely small. Such levels have never been observed
in reality where the senior part usually accounts for the major part of the
capital structure. By contrast, name diversification, i.e., increasing N has
hardly any effect.

ω = 0.05 ω = 1.00

N = 100 N = 1000 N = 100 N = 1000

ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75%

Equity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mezzanine 0.0530 0.2060 0.0470 0.2070 0.0670 0.1240 0.0630 0.1230

Senior 0.0570 0.4560 0.0480 0.4460 0.0880 0.9680 0.0800 0.9530

Table 5: Capital structure, attachment points. EL tranching.

3.3.2 Unexpected loss measures

Normalized CEL variances, σ̃, for all assets (tranches, bonds, portfolios) are
given in Table 6. First of all, the mezzanine tranches in all eight scenarios
have very high σ̃. The senior tranches achieve lower levels when both ρ
and ω are low and high levels when both asset pool correlations are high.
Comparing tranches with their rating-analog bonds and pool investments
tranches have clearly higher variance portions (and thus facto sensitivity) in
all scenarios. Reducing ρ, i.e., intra-factor correlation, implies significantly
lower σ̃ with bond and portfolio investments. For instance, for ω = 0.05
when moving from ρ = 0.75 to ρ = 0.20 σ̃ declines by factor 10 to 40
with bonds and portfolios. By contrast, corresponding effects for mezzanine
and senior tranches are clearly smaller (factor 7 and 1.5, respectively). In
addition, while lower ρ implies lower σ̃ with senior tranches the effect is
unclear for mezzanine tranches.

Reducing ω, i.e., inter-factor correlation, implies moderately lower σ̃
with portfolio investments (factor 2). Bonds are of course unaffected. Senior
tranche risks are also reduced by a factor of about two. Again, for mezzanine
tranches the effect is small and unclear as for direction, i.e., in some cases
rising, in some cases falling.

Finally, as for name diversification there is of course no effect with bond
and portfolio investments. However, for tranches, we find that increasing
the number of names always implies increased σ̃. Although of small order
of magnitude, the effect is not in line with usual diversification arguments
according to which we would expect lower tranche risks.

Finally, an explanatory note on tranche asset correlations. Above, we
stated that tranches which are represented in the Gaussian single risk-factor
bond model have always leveraged asset correlation in comparison with the
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underlying pool. For example, when the pool has average asset correlation
of ρ = 0.20, a mezzanine tranche represented as a bond has typically ρ
between 0.70 and 0.90. We are able to show this now quite simply based
on σ̃, our normalized systematic risk measure. In Table 7 we show asset
correlations of bonds represented in a Gaussian single factor model having
the same normalized systematic variance, σ̃, and the same expected loss
as the securities in Table 6. We see that the implied correlations of the
mezzanine tranche is greater than 80% in all eight cases. By contrast, a
conventional bond has asset correlations between 5% and 20%. Furthermore,
all tranche correlations are significantly higher than the corresponding bond
or pool correlations. Altogether, this again shows that both their systematic
risk sensitivity as well as their contribution to portfolio concentrations is
significantly higher.

ω = 0.05 ω = 1.00

N = 100 N = 1000 N = 100 N = 1000

ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75%

Equity 0.2041 0.5668 0.2398 0.5714 0.2716 0.6965 0.2944 0.7053
Mezzanine 0.4119 0.6247 0.7825 0.6595 0.5360 0.4771 0.8052 0.4888
Senior 0.0314 0.2130 0.0471 0.2184 0.0781 0.5945 0.0970 0.6835

Pool (EL = 0.0110) 0.0180 0.1770 0.0180 0.1769 0.0351 0.3498 0.0348 0.3493
Pool (EL = 0.0002) 0.0028 0.1011 0.0028 0.1010 0.0054 0.2019 0.0055 0.2017

Bond (EL = 0.0110) 0.0355 0.3485 0.0355 0.3485 0.0368 0.3507 0.0368 0.3507
Bond (EL = 0.0002) 0.0053 0.2008 0.0053 0.2008 0.0060 0.2148 0.0060 0.2148

Table 6: Normalized CEL variance, σ̃.

ω = 0.05 ω = 1.00

N = 100 N = 1000 N = 100 N = 1000

ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75% ρ = 20% ρ = 75%

Equity 0.3641 0.8524 0.4084 0.8555 0.4891 0.9282 0.5144 0.9322
Mezzanine 0.8180 0.9346 0.9771 0.9467 0.8975 0.8665 0.9830 0.8730
Senior 0.4794 0.8043 0.5376 0.8087 0.6167 0.9614 0.6535 0.9772

Pool (EL = 0.0110) 0.1216 0.5453 0.1215 0.5454 0.2023 0.7512 0.2004 0.7511
Pool (EL = 0.0002) 0.1377 0.6183 0.1384 0.6181 0.1994 0.7520 0.2007 0.7513

Bond (EL = 0.0110) 0.2031 0.7500 0.2031 0.7500 0.2127 0.7536 0.2127 0.7536
Bond (EL = 0.0002) 0.1895 0.7496 0.1895 0.7496 0.2184 0.7664 0.2184 0.7664

Table 7: Asset correlation of a single-factor bond having normalized CEL
variance σ̃ as reported in Table 6.
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4 Diversification Potentials of CDO and Corpo-
rate Bond Portfolios in Comparison

In the last section we have studied the effect of diversification activities
within the context of typical tranching patterns. We found that the con-
centration risk of tranches is always increased as compared with bonds or
horizontal pool investments. But even so the question arises whether these
risk concentrations could be eliminiated by investing in as many different
factors as possible. In other words, although each individual tranche has
high risk concentration an investor may wonder whether this is indeed rel-
evant. He only needs to collect tranches based on asset pools driven by as
many different factors (e.g., countries or sectors) as possible. Given that
any collection of assets can be securitized, at least in theory, this seems to
be a realistic claim.

In the previous section we used a two-factor model for the CDO collateral
pools. The investor portfolios we model now are rather similar. The only
difference is that we generalize from two to n factors. That is, we have a
homogeneous portfolio of I fixed-income securities. Each of these bonds or
tranches i has an associated asset value process

Ri =
√

ρMj +
√

1− ρUi

Each of these asset values is associated with a latent factor Mj which in
turn depends on a common background factor M

Mj =
√

ωM +
√

1− ωWj

so that any two “systematic” factors are correlated

Corr(Mj , Mj′) = ω

Substituting Mj in Ri yields

Ri =
√

ρ
(√

ωM +
√

1− ωWj

)
+

√
1− ρUi

=
√

ρ
(√

ωM +
√

1− ωWj

)
+

√
1− ρUi

=
√

ρ
√

ωM +
√

ρ
√

1− ωWj +
√

1− ρUi

=
√

ρ
√

ωM +
√

1− ρωŨi

(10)

Thus, if i, i′ ∈ ij

Ri =
√

ρMj +
√

1− ρUi

Ri′ =
√

ρMj +
√

1− ρUi′
(11)

and Corr(Ri, Ri′) = ρ.
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By contrast, if i,∈ ij , i′ ∈ ij′ and j 6= j′,

Ri =
√

ρMj +
√

1− ρUi

=
√

ρ
√

ωM +
√

1− ρωŨi

Ri′ =
√

ρMj′ +
√

1− ρUi′

=
√

ρ
√

ωM +
√

1− ρωŨi′

(12)

and Corr(Ri, Ri′) = ρ · ω. Note that Ũi are correlated for any two positions
from the same subgroup, yet, they are uncorrelated for any two positions
from different subgroups.

Thus, the portfolio is divided into n subgroups of assets each with an
individual common risk factor. The portfolio may contain either bonds or
tranches. Both asset classes differ in terms of their asset correlation ρ.
For CDOs they are naturally significantly higher than for classical bonds.
We used this fact already when studying collateral pools with assets (i.e.,
tranches) having correlations as high as 75%.

Furthermore, we assume equally-sized subgroups j so that each has port-
folio share of 1/n. Let Lj denote loss in subgroup j, then Lj/n is the loss
share of subgroup j in the total portfolio. For the total portfolio variance
we obtain

V[L] = V


∑

j

1
n

Lj




=
∑

j

1
n2
V[Lj ] +

∑

j<j′
2 · 1

n2
Cov

(
Lj , Lj′

) (13)

Now the subgroup variances are given by

V[Lj ] = V[E[Lj | M ]] + E[V[Lj | M ]]

= LGD2

[
Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− λ2 +
1
N

(
λ− Φ2

(
Φ−1(λ),Φ−1(λ); ρ

))]

(14)

where N denotes the absolute subgroup size, i.e., each subgroup contains N
obligors.

The inter-subgroup covariation is given by

Cov
(
Lj , Lj′

)
= E

[
E

[
Lj · Lj′ | M

]]− E[Lj ]E
[
Lj′

]

= LGD2 · E[
λj(M)λj′(M)

]− λ2 · LGD2

= LGD2 · E[
P
[
Rj < cj , Rj′ < cj′ | M

]]− λ2 · LGD2

= LGD2 · Φ2

(
Φ−1(λ), Φ−1(λ); ρω

)− λ2 · LGD2

(15)
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Note that the last line of (15) looks similar to the first two terms of
(14). Indeed, it is the same as long as ω = 1 which represents the case of all
loading on the same factor Mj .

Also note where the correlation of the bivariate normal comes from. It is
the correlation between any Ri and Ri′ where i ∈ ij and i′ ∈ ij′ and j 6= j′:

Corr (Ri, Ri′) =
√

ρω
√

ρω = ρω

Substituting (14) and (15) into (13) we obtain

V[L] = V


∑

j

1
n

Lj




=
∑

j

1
n2
V[Lj ] +

∑

j<j′
2 · 1

n2
Cov

(
Lj , Lj′

)

= LGD2 · [Φ2

(
Φ−1(λ),Φ−1(λ); ρω

)− λ2
]

+ LGD2 · 1
n

[
1
N

(
λ− Φ2

(
Φ−1(λ), Φ−1(λ); ρ

))]

+ LGD2 · 1
n
· [Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− Φ2

(
Φ−1(λ),Φ−1(λ); ρω

)]

(16)

The variance clearly decreases as n, the number of (equally weighted)
factors in the portfolio, increases. However, this effect becomes less signifi-
cant as N increases and also as ω approaches unity. The N effect is simple
name diversification. The second summand tends to zero as N increases.
The ω effect means that as ω → 1 the difference in the third line (third
summand) tends to zero. Clearly, the diversification effect of investments in
a larger number of factors n is less pronounced the higher the inter-factor
correlation ω. Finally note that the first summand cannot be decreased by
increasing n. In other words, this baseline risk is not diversifiable by invest-
ment in more subsectors. The only way to reduce it is by lowering ω and
ρ.

4.1 Analysis

To analyze the model we need to set some real-world restrictions. We do
have quite reliable estimates of the factor loadings ρ of bonds and tranches.
For bonds 0.05 ≤ ρ ≤ 0.20 is quite realistic. For tranches, much higher
factor loadings are necessary, usually in the range 0.60 ≤ ρ ≤ 0.95. Our
knowledge on how many factors are available and how high they correlate,
however, is rather limited. The general assumption is that the corporate
bond universe is clearly smaller than the world of securitizations. Hence, n
and ω need to be our key sensitivity parameters.
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Now we perform the following analysis. We compare two portfolios,
a bond portfolio and a tranche portfolio. Both differ only in terms of n,
the number of factors which the assets load on. All else (λ,LGD, ρ, ω) is
identical. We choose a level of ω between zero and unity. We also choose
the number of factors nB in the bond portfolio. Then we ask which number
of factors nT are necessary in the tranche portfolio in order to obtain at
least the bond portfolio variance. Thus, we require that bond and tranche
portfolio variance be equal:

V[LB] = V[LT] (17)

Upon substitution of (16) and rearrangement we obtain

nT = nB · LGD2
T

LGD2
B

· ζ1

ζ2
(18)

where

ζ1 =
[

1
N

(λ− Φ2 (.; ρT))
]

+ [Φ2 (.; ρT)− Φ2 (.; ρTω)]

ζ2 =
[

1
N

(λ− Φ2 (.; ρB))
]

+ [Φ2 (.; ρB)− Φ2 (.; ρBω)]

+ nB

[[
Φ2 (.; ρBω)− λ2

]− LGD2
T

LGD2
B

[
Φ2 (.; ρTω)− λ2

]]

(19)

If LGDB = LGDT we obtain the following bond-tranche-portfolio rela-
tionship:

nT = nB ·
[

1
N (λ− Φ2 (.; ρT))

]
+ [Φ2 (.; ρT)− Φ2 (.; ρTω)][

1
N (λ− Φ2 (.; ρB))

]
+ [Φ2 (.; ρB)− Φ2 (.; ρBω)] + nB [Φ2 (.; ρBω)− Φ2 (.; ρTω)]

(20)

This formula relates the number of factors in a tranche portfolio to the
number of factors in a bond portfolio so that both have equal variance. If
the quotient on the right hand side (we call this “bond-tranche ratio”) is
greater than unity, then nT > nB.

First, since ρT > ρB the first term in the numerator (the idiosyn-
cratic term) is smaller than its corresponding term in the denominator.
Thus, larger subgroups (implying a reduction of idiosyncratic risk) increase
the bond-tranche ratio. Second, regarding the second terms the numer-
ator term is also larger. The reason is that Φ2(.; ρT) > Φ2(.; ρB) and
Φ2(.; ρTω) > Φ2(.; ρBω), it is true, but we know that Φ2(.; ρ) is convex,
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Figure 1: Bivariate Gaussian Distribution Φ2(Φ−1(PD), Φ−1(PD); ρ).

i.e., its slope rises with ρ. Figure 1 shows this very clearly. Finally, the
third term in the denominator. The difference Φ2 (.; ρBω) − Φ2 (.; ρTω) is
negative because ρT > ρB. Thus, a larger number of factors in the bond
portfolio reduce the denominator and increase the quotient. Through this
term it is possible that the denominator becomes negative. In that case,
there is no positive solution for nT, i.e., there is no increase in the number
of factors in the tranche portfolio that drives the portfolio variance down
to the bond portfolio variance level. Finally, from all this we conclude that
nT > nB.

We want to collect some numerical facts now. To that end, we per-
form the following simulation study. We choose different combinations of
ρT, ρB, ω, λ, N , and nB from the range of plausible levels (see Table 8) and
calculate the bond-tranche-ratio.

Our results are shown in Figure 2.
The graphs show relative frequencies as well as cumulative relative fre-

quencies of the bond-tranche-ratio. The subgraphs refer to different levels
of nB. First of all, we observe that there are no observations between zero
and unity. This confirms our reasoning from above. Second, we see that in
most cases the major mass of observations is in the negative region which
means that there is no positive nT allowing to achieve variances as low as
in the bond portfolio. Note that as nB rises, more and more mass is be-
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(a) nB = 1
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(b) nB = 5
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(c) nB = 10
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(d) nB = 25
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(e) nB = 50
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(f) nB = 100

Figure 2: Relative (black) and cumulative (gray) frequency of bond-tranche-
ratios for different levels of the number of bond factors nB.
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ρB 0.01 0.02 . . . . . . . . . 0.20
ρT 0.60 0.61 . . . . . . . . . 0.95
ω 0.05 0.10 . . . . . . . . . 0.95
λ 0.001 0.01 0.05 0.10 . . . 0.30
N 1 10 100 500 1000 5000
nB 1 5 10 25 50 100

Table 8: Simulation design levels. A combination of one value from each row
represents one simulation configuration.

tween −1 and zero which implies that the undiversifiable level of tranche
portfolio variance7 is much higher than in the bond portfolio. By contrast,
as the number of bond portfolio factors rises, the possibility to replicate
it by means of a tranche portfolio becomes lower and lower very fast. For
instance, for nB = 5, which is certainly a lower bound even for bond port-
folios, almost 90% of all examined constellations imply consistently higher
(and thus undiversifiable) tranche portfolio variances.

5 Conclusion
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Appendix

A Loan Equivalent Representation

Conditional expected loss as a function of M contains all systematic infor-
mation on a defaultable security. Calculating the loss distribution of a CDO
tranche usually requires to simulate the whole underlying asset pool. To
reduce the computational burden CDOs are frequently treated as bonds.
However, as showed by Donhauser et al. (2010), special adjustments are
necessary for such a “bond representation” to work properly. In addition to
computational simplification a bond representation simplifies comparisions
with corporate or government bonds. Subsequently, we outline one possible
procedure.

We want to replicate an original expected loss profile on a grid M

(M,E
[
L0 | M]

)M∈M

where
E

[
L0 | M]

= λ0(M) · LGD0(M)

i.e., the conditional PDs and LGDs may be arbitrary functions of M .
We replicate it by means of a simple bond model with conditional PDs

and fixed LGD:
E[L | M ] = λ(M) · LGD

Note that this implies that LGD = 1 whenever E
[
L0 | M]

ranges from zero
to unity.
Taking expectations and solving for the PD we obtain

λ =
E

[
L0

]

LGD

Thus, our approximation equation is

E
[
L0 | M]

= E[L | M ] + ε

= λ (M) · LGD + (1− λ (M)) · 0 + ε

= λ (M) · LGD + ε

(21)

for any M and ε is an approximation error.
Based on these assumptions we calibrate a Gaussian single risk factor

model now. First, the asset value process at maturity

R =
√

ρM +
√

1− ρU (22)

24



Second, default occurs when

R < c (23)

where c is a constant called “default threshold”.
Third, the probability of default

P[R < c] = λ =
E

[
L0

]

LGD
(24)

Fourth, the conditional probability of default

P[R < c | M ] = λ(M) = Φ
(

Φ−1(λ)−√ρM√
1− ρ

)
(25)

Thus, the original profile is explained by

E
[
L0 | M]

= Φ
(

Φ−1(λ)−√ρM√
1− ρ

)
· LGD + ε (26)

The only remaining parameter is ρ which has to be chosen so that the
approximation error ε is small.

Finally, note that a crucial restriction of our approximation is fulfilled
per construction. The original as well as the approximating profile have
equal expected loss:

E
[
E

[
L0 | M]]

= E
[
L0

]
(27)

and

E[E[L | M ]] = LGD · E[λ(M)]
= LGD · λ

= LGD · E
[
L0

]

LGD
= E

[
L0

]
(28)

B Relative Variance

This section is to relate the relative variance σ̃ to asset correlation ρ which
is a standard measure of systematic risk sensitivity. We derive a closed form
expression for σ̃ for single names in the Gaussian single risk factor model
with fixed LGD.

Above we defined relative variance as follows:

σ̃ =
V [E[L | M ]]
V [E[L | M ]max]

(29)
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The denominator of this ratio is already known from the main text. It
is given by

V [E[L | M ]max] = LGD · E[L]− E[L]2 (30)

The numerator can be written as follows

V [E[L | M ]] = (LGD)2 · V [λ(M)]

= (LGD)2 · (E[
λ(M)2

]− λ2
)

= (LGD)2 · E
[
λ (M)2

]
− (LGD)2 ·

(
E[L]
LGD

)2

= (LGD)2 · Φ2

(
Φ−1(λ), Φ−1(λ); ρ

)− E[L]2

(31)

The bivariate normal distribution function Φ2(.) comes from the obser-
vation that

E
[
λ (M)2

]
= E

[
P
[
Ri < Φ−1(λ), Rj < Φ−1(λ) | M]]

= Φ2

(
Φ−1(λ), Φ−1(λ); ρ

) (32)

Putting all parts together we obtain

σ̃ =
(LGD)2 · Φ2

(
Φ−1(λ), Φ−1(λ); ρ

)− E[L]2

LGD · E[L]− E[L]2

=
Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− λ2

λ− λ2

(33)

which has an intuitive interpretation. It is the difference between the joint
PD and the joint PD with independence divided by the difference between
the maximum joint PD and the joint PD with independence. The joint PD
with independence, λ2, is also the minimum joint PD as long as ρ ≥ 0 is
required.
Now note that

lim
ρ→1

Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)
= λ =

E[L]
LGD

(34)

and thus limρ→1 (σ̃) = 1.
Finally,

lim
ρ→0

Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)
= λ2 =

(
E[L]
LGD

)2

(35)
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Figure 3: Relative variance σ̃ as a function of ρ.

and thus limρ→0 (σ̃) = 0.
This shows that ρ and σ̃ are comonotonic and have the same limits.
A graphical illustration of this result for different levels of λ is shown in

Figure 3. We clearly see that the lower λ the greater the distance between ρ
and σ̃. For example, for λ = 0.001 a level of ρ = 0.8 corresponds to σ̃ = 0.27.
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C Portfolio Variance

Substituting (14) and (15) into (13) we obtain

V[L] = V


∑

j

1
n

Lj




=
∑

j

1
n2
V[Lj ] +

∑

j<j′
2 · 1

n2
Cov

(
Lj , Lj′

)

=
1
n2

∑

j

LGD2
[
Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− λ2
]

+ LGD2

[
1
N

(
λ− Φ2

(
Φ−1(λ), Φ−1(λ); ρ

))]

+ 2 · (n− 1 + 1) · 1
2
(n− 1) · 1

n2
Cov

(
Lj , Lj′

)

= LGD2 · n

n2

[
Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− λ2
]

+ LGD2 · n

n2

[
1
N

(
λ− Φ2

(
Φ−1(λ),Φ−1(λ); ρ

))]

+ LGD2 · (n− 1) · n

n2
· [Φ2

(
Φ−1(λ), Φ−1(λ); ρω

)− λ2
]

= LGD2 · 1
n

[
Φ2

(
Φ−1(λ), Φ−1(λ); ρ

)− λ2
]

+ LGD2 · 1
n

[
1
N

(
λ− Φ2

(
Φ−1(λ), Φ−1(λ); ρ

))]

+ LGD2 · 1
n
· (n− 1) · [Φ2

(
Φ−1(λ), Φ−1(λ); ρω

)− λ2
]

(36)

Finally, we obtain

V[L] = LGD2 · [Φ2

(
Φ−1(λ),Φ−1(λ); ρω

)− λ2
]

+ LGD2 · 1
n

[
1
N

(
λ− Φ2

(
Φ−1(λ), Φ−1(λ); ρ

))]

+ LGD2 · 1
n
· [Φ2

(
Φ−1(λ),Φ−1(λ); ρ

)− Φ2

(
Φ−1(λ),Φ−1(λ); ρω

)]

(37)
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