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A Note on the Berkowitz Test with Discrete

Distributions

Abstract

Berkowitz (2001) suggested a powerful and popular density test
based on a probability integral transformation (PIT). For the PIT to
work properly the original distribution needs to be continuous. In this
article, we show what problems can arise when the procedure is applied
to discrete distributions. We suggest a simple modification so that the
basic assumptions of the Berkowitz test are recovered.
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1 Introduction

It is common practice to base risk assessments of mark-to-market portfolios
on profit-/loss quantiles like Value at Risk (VaR) and to validate them by
means of a binomial test (see e.g. Kupiec 1995, Crnkovic & Drachman 1996,
Pritsker 1997, Lopez 1999). This test class, however, has the drawback that
it disregards most of the distributional information and requires large sample
sizes in order to be powerful. As large samples are often not available,
Berkowitz (2001) suggests to use the more efficient class of density-based
tests.

Contrary to the literature on VaR model validation there are only few
corresponding contributions for credit portfolio models (Lopez & Saidenberg
(2000) and Frerichs & Loeffler (2003)). The reasons for this research gap are
lack of data and scarcity of default events which makes application of market
risk validation methods extremely difficult. Hence, Lopez & Saidenberg
(2000) suggested resampling techniques to mitigate the data problems. Later
on, Frerichs & Loeffler (2003) applied the test procedure of Berkowitz (2001)
to credit default/loss data. The authors report remarkable power results
even for short time series. However, as we shall show in this article, the
basic Berkowitz approach must be applied with caution in some situations.
More precisely, the test is based on two probability transformations. The
first of these transformations implicates a standard uniform distribution if
the original distribution (the distribution of losses or defaults) is continuous.
Otherwise, however, the result is not standard uniform and we show that
this translates into biased test results. To resolve this problem we suggest
a simple modification of the discrete probability transformation and show
that this admits the usual χ2 approximation.

The article is structured as follows. In the next section we shortly intro-
duce the Berkowitz test approach. After that, we show the dangers of using
a simple discrete probability transform. In Section 4 we suggest a modi-
fied probability transform and show how it improves the results. Section 5
concludes.

2 Berkowitz Test Procedure

The approach of Berkowitz (2001) involves testing whether hypothesized
and true probability distribution coincide, i.e., H0 : FL0(l) = FL(l). Here,
FL denotes the true cumulative distribution function (cdf) and FL0 is the
hypothesized cdf.

In a first step the observed loss time series l1, . . . , lT is transformed by
its hypothetical probability integral (FL0(lt))

T
t=1. Under H0 the transformed

observations are iid standard uniform, i.e.,

ut = FL0(lt) ∼ U(0, 1), (1)
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where U(0, 1) denotes the uniform distribution with support [0, 1].
In a second step the data (ut)T

t=1 are transformed once again via the
inverse of the standard normal cdf. This admits application of a large set of
(standard) normality tests. Finally, under H0 we have that

zt = Φ−1 (ut) ∼ N (0, 1). (2)

To summarize, if the first transformation is based on the true credit
risk model, we get ut ∼ U(0, 1) and zt ∼ N (0, 1). Thus, we hypothesize
that H0 : zt ∼ N (0, 1) for which Berkowitz (2001) proposes the classical
likelihood ratio (LR) test. In case of rejection, there is an α · 100 percent
probability (the test size) that the null hypothesis is true even so.

3 Discrete Probability Integral Transformation (PIT)

If the original distribution is discrete, ut can of course not be standard
uniform. To illustrate this shortly, take, for example, a credit portfolio
default model represented by the random variable L counting the number of
defaults over a certain period of time. After the first transformation we have
U = FL(L). Since L ≥ 0 and the number of defaults in a credit portfolio
is usually low, a pronounced mass peak at FL(0) does exist, i.e., we have
a singularity P(U = FL(0)) > 0. On the other hand, the interval [0, FL(0))
has zero density, i.e., P(U < FL(0)) = 0.

More generally, let L denote a discrete random variable with K mass
points. Let possible realisations of L be denoted by l so that the complete
set of realisations in ascending order is

l(1), . . . , l(K)

Now we have that

P
(
L = l(k)

)
= P

(
U = FL

(
l(k)

))
> 0

but

P
(
l(k−1) < L < l(k)

)
= P

(
FL

(
l(k−1)

)
< U < FL

(
l(k)

))
= 0

So the transfom of a discrete random variable is not standard uniform.
What does that imply for the Berkowitz test. Ties, i.e., multiple oc-

curences of the same lt and thus ut and zt, are particularly likely when
the simulated portfolio is small or when default correlation is high. In the
latter case, we have a massive peak at L = 0. But if the variance of L is
high and if the portfolio is large the likelihood of several identical observa-
tions lt is very low. In any case, if U = FL(L) is not standard uniform,
Z = Φ−1 (FL (L)) is not standard normal and the χ2(2) distribution is only
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a poor approximation for the distribution of the LR statistic. This problem
cannot be resolved by increasing the sample size T . Indeed, application of
the Berkowitz test on large samples, where the asymptotic χ2 distribution
is usually a good approximation, may be misleading when based on discrete
probability integral transforms.

To illustrate this, we perform a simulation study. We use the standard
Gaussian single-risk factor model as our credit portfolio model (e.g. Gordy
2000). The number of obligors is denoted by N . All obligors have the same
default probability λ. Likewise, we assume homogeneous asset correlations
ρ for all pairs of obligors. We consider default time series of length T .

The tested levels of N , λ, ρ, and T are shown in Table 1.

n

T 5 10 100 500 4
N 100 1,000 10,000 3
ρ 5% 10% 20% 3
λ 0.1% 1% 5% 3

Table 1: Set of tested parameter levels.

Now we proceed as follows. We select a combination of parameter levels
(T,N, λ, ρ) from Table 1 and simulate a default sample of length T . We draw
10, 000 such samples and calculate the LR statistic of the Berkowitz test and
record the fraction of simulation runs where LR falls in the α = 10% rejection
area of a χ2(2) distribution. When the discrete PIT has the hypothesized
impact, we expect clear deviations from the 10% level.

The results are given in Table 2.

T = 5 T = 10 T = 100 T = 500

ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20%
N = 100

λ = 0.1% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000
λ = 1% 0.4920 0.5115 0.7390 0.7325 0.8565 0.9855 1.0000 1.0000 1.0000 1.000 1.0000 1.0000
λ = 5% 0.1885 0.1660 0.1875 0.1510 0.1520 0.1880 0.5525 0.6090 0.9195 0.997 1.0000 1.0000

N = 1,000

λ = 0.1% 0.4745 0.7300 0.9405 0.8110 0.9670 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
λ = 1% 0.1595 0.1590 0.1775 0.1345 0.1490 0.1770 0.2495 0.3520 0.8595 0.7635 0.9525 1.0000
λ = 5% 0.1590 0.1565 0.1455 0.1195 0.1280 0.1310 0.1095 0.1140 0.1055 0.1400 0.1410 0.2200

N = 10,000

λ = 0.1% 0.1695 0.1620 0.2235 0.1505 0.1465 0.3030 0.3070 0.5565 1.0000 0.8700 0.9985 1.0000
λ = 1% 0.1420 0.1615 0.1630 0.1180 0.1120 0.1180 0.0930 0.0950 0.1195 0.1120 0.1160 0.2185
λ = 5% 0.1575 0.1480 0.1560 0.1215 0.1140 0.1255 0.1060 0.1065 0.1040 0.1005 0.1110 0.0980

Table 2: Discrete PIT: Fraction of simulation runs (hitting rate) exceeding
the χ2(2) 90% quantile for varying levels of N , T , λ, and ρ.

First and foremost, we observe that deviations of the simulated hitting
rate from the 10% ideal decrease top-down, i.e., from N = 100 to N =
10, 000. The reason for this is that in a larger portfolio with not too low
a PD the probability mass is distributed on more possible support points
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which reduces the probability of ties1, 2. The second observation from Table
2 has already been mentioned above. The hitting rate increases from left to
right, i.e., larger samples deteriorate the applicability of the χ2 distribution.
Although counterintuitive at first sight the explanation is simply that in a
larger sample the probability of ties is higher and ties lead to clear deviations
from a Gaussian and χ2, respectively3. Higher levels of ρ also implicate
higher hitting rates. Again the reason is that a high level of correlation
increases the probability of L = 0 and thus a large frequency of ties. Finally,
higher levels of λ by and large decrease the hitting rate. This is due to the
associated increase in the variance of the sample4.

To sum up, we found that for small portfolios with low default rates
and/or high correlation the basic Berkowitz test is not directly applicable.
In the next section we suggest an approach to resolve this problem.

4 A Modified Probability Integral Transformation

As a solution to the aforementioned problems, we suggest to map ut to a
randomly drawn realisation from the left-adjacent interval.

Formally, let ut = FL(lt) and ut = u(k), i.e., ut is identical to the kth
element in the ordered sequence of possible realisations u(1), . . . , u(K) of
U = FL(L). Then, we suggest to replace the pseudo observations FL(lt) by
random variables drawn from

U
(
u(k−1), u(k)

)
(3)

where u(k−1) = 0 for k = 1.
It is obvious that this procedure establishes a uniform distribution over

(0, 1) since P
(
U = u(k)

)
= u(k) − u(k−1) and our procedure warrants that

this mass is uniformly distributed over the interval
(
u(k−1), u(k)

)
.

The results of using this modified PIT on the hitting rates (i.e., again
hits above the 90% χ2(2) quantile) are given in Table 3.

Now we do no longer observe any differences in terms of the level of
N , λ, and ρ. The reason is simply that the probability of ties is almost
zero due to the modified PIT and the variance of the default distribution
has no relevance. By contrast, we now observe the expected effect of larger
samples, i.e., as T increases the hitting rates approach the asymptotic level

1In a large portfolio with a PD not too low the likelihood of two equal default counts
(i.e., P(Lt = Lt′), t 6= t′) is very low.

2Note that in Frerichs & Loeffler (2003), where the Berkowitz procedure is originally
suggested for credit portfolio model validation, this problem is not mentioned. However,
their simulation results are not influenced by discrete PIT bias as they use a large portfolio
(N = 10, 000).

3Ties lead to significant spikes in the distributions of U and Z and finally to a clear
upward shift of the χ2.

4Within common ranges the variance of portfolio loss increases as λ increases.
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T = 5 T = 10 T = 100 T = 500

ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20% ρ = 5% ρ = 10% ρ = 20%
N = 100

λ = 0.1% 0.1485 0.1470 0.1625 0.1180 0.1145 0.1400 0.0955 0.0980 0.1075 0.1010 0.0955 0.0945
λ = 1% 0.1575 0.1520 0.1500 0.1260 0.1265 0.1310 0.1005 0.1075 0.0970 0.0975 0.1160 0.1100
λ = 5% 0.1605 0.1410 0.1500 0.1170 0.1275 0.1155 0.1040 0.0925 0.0980 0.1035 0.1085 0.0985

N = 1,000

λ = 0.1% 0.1630 0.1475 0.1770 0.1230 0.1165 0.1330 0.1080 0.0875 0.1070 0.1100 0.1065 0.1060
λ = 1% 0.1485 0.1555 0.1510 0.1200 0.1230 0.1185 0.0915 0.1005 0.1035 0.0850 0.1050 0.0920
λ = 5% 0.1600 0.1560 0.1500 0.1190 0.1260 0.1325 0.0960 0.1090 0.0980 0.0995 0.1030 0.1080

N = 10,000

λ = 0.1% 0.1615 0.1470 0.1430 0.1325 0.1220 0.1220 0.1090 0.1055 0.0910 0.1075 0.1030 0.1015
λ = 1% 0.1435 0.1625 0.1720 0.1180 0.1140 0.1300 0.0950 0.0960 0.0955 0.1040 0.0995 0.1030
λ = 5% 0.1570 0.1475 0.1570 0.1220 0.1145 0.1270 0.1035 0.1075 0.1015 0.1005 0.1090 0.1055

Table 3: Modified Discrete PIT: Fraction of simulation runs exceeding the
χ2(2) 90% quantile for varying levels of N , T , λ, and ρ.

α = 10%. Even for very small samples (i.e., T = 5) the approximation error
for the modified PIT is comparatively small. Compare, for example, the
columns for T = 100 for the discrete and modified PIT. In the latter case,
the rejection frequencies are between 9% and 11% while they range from 9%
to 100% in the former case.

For a graphical comparison consider Figure 1 which compares a χ2(2)
distribution to the LR distribution based on discrete PIT and the LR dis-
tribution based on our modified PIT. It is obvious that while the modified
PIT is close to the limiting distribution the simple discrete PIT is not. It is
clearly shifted to the right. Comparing subfigure a) and b) one can clearly
observe the aforementioned effect that larger portfolios reduce the error of
using a discrete cdf.

5 Conclusion

In this article we outline the dangers of using a discrete probability integral
transformation within the context of the Berkowitz test. We show that
larger portfolios, lower correlation, and higher PDs render the standard
LR distributional approximation more reliable. By contrast, increasing the
sample size may even deteriorate the error. We suggest a simple sampling
technique to resolve this problem.
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(a) N = 1, 000
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(b) N = 10, 000

Figure 1: LR frequency polygons for modified PIT, discrete PIT and asymp-
totic χ2(2) distribution. T = 500, λ = 1%, ρ = 10% and (a) N = 1, 000 and
(b) N = 10, 000.
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