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Abstract

Structured credit instruments play a significant role at the roots of the credit crisis. It
seems as if both practitioners as well as academics have largely disregarded the specific risk
profile of portfolio credit derivatives like CDOs, especially their extremely high sensitivity
to systematic risks. In this article, we aim at quantifying the systematic risk portion of
CDOs based on several risk measures. One of them is a bond representation which admits
straightforward risk comparisons of CDOs and conventional bonds. Based on that, we
examine common pooling and structuring patterns and find that they are mostly boosting
systematic risk. Finally, we shortly address the diversification myth associated with CDOs
and show that although being name diversified CDOs imply high factor concentration risk.
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1 Introduction

The burst of the US housing bubble has triggered an unprecedented depreciation of the whole
asset class of credit securitizations. In several waves the major rating agencies downgraded
loads of asset backed securities (ABS) and collateralized debt obligations (CDOs). One ma-
jor problem was that even best rated AAA securities were downgraded, sometimes multiple
notches (see Moody’s Investors Service [2008]). This rating transition behavior is totally uncom-
mon with conventional bonds and rating agencies always pointed out the historical stability of
ratings for structured finance products (see Moody’s Investors Service [2007], Fitch Ratings
[2006]). A legitimate ensuing question was whether structured finance products like CDOs are
intrinsically dangerous or whether they just differ from defaultable bonds. This pressing ques-
tion was partially answered by credit rating agencies who emphasized that CDO ratings do not
have the same meaning as classical bond ratings. But what exactly is the difference? Both are
defaultable fixed income securities but they remarkably differ in terms of their risk profile.

A consideration of what CDOs actually are immediately reveals the difference. A CDO in-
vestment is a bet that the default rates in the underlying pool will exceed the subordination
(which is just a safety buffer) with a certain probability. Now, the type of default clustering
which is necessary for tranches with higher subordination to be hit is only possible through
systematic effects. CDO tranche risks are primarily driven by systematic risks while conven-
tional bonds are driven by both idiosyncratic as well as systematic components. Although
meanwhile this fact is frequently stated in the literature [e.g. Duffie, 2008, Fender, Tarashev,
and Zhu, 2008], there are only few more detailed analyses available so far. Specifically, only
little knowledge does exist on how certain pooling and structuring patterns imply an increase
of systematic risks, such as the choice of collateral or the structure of issued tranches. This issue
was largely disregarded because of a business model called “arbitrage CDO”. Arbitrage CDOs
are vehicles earning money by relatively cheap hedging of a pool of credit risk investments. As
we argue below, this “excess spread” may have been increased by arbitrage of systematic risks.

Coval, Jurek, and Stafford [2009a], Coval, Jurek, and Stafford [2009b] and Brennan, Hein,
and Poon [2009] analyse aspects of a possible mispricing of CDO tranches, caused by their in-
creased sensitivity to systematic risks. The authors argue that the price investors pay for struc-
tured instruments is too high if their investment decision solely relies on the rating. According
to Coval, Jurek, and Stafford [2009a] this is especially true for senior tranches which default just
when the economy is in a very bad state. In contrast, the results obtained by Brennan, Hein, and
Poon [2009] indicate that the AAA-rated tranches are only marginally mispriced, and that the
highest profits can be gained with junior tranches. Eckner [2008] comes to similar conclusions.

In this paper we try to quantify CDO sensitivity to systematic risks. As mentioned in
Hamerle, Jobst, and Schropp [2008] and Krahnen and Wilde [2009], the risk properties of ABS
and CDOs differ significantly from those of corporate bonds. We base our analyses on con-
ditional expected loss (i.e. expected loss conditional upon the market factor). Moving from
benign to adverse states of the market factor this measure clearly reveals that tranches have
a much higher sensitivity with respect to systematic factors than bonds with a comparable
rating. We estimate the asset correlation associated with a CDO tranche treating the struc-
tured instrument as a single-name credit instrument (i.e. a loan equivalent). Yahalom, Levy,
and Kaplin [2008] from Moody’s point out, that this tractable approach ”requires appropriate
parametrization to achieve a reasonable description of the cross correlation between the struc-
tured instrument and the rest of the portfolio.” They provide an approach different to ours. For
the determination of the correlation parameter they estimate the joint default correlation of two
CDOs loading on the same factor and back out the asset correlation that is consistent with this
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default correlation in the Gaussian single risk factor model. The appoach requires loss given
default to be modelled separately.

In our article we examine the systematic risk arising from typical pooling and tranching
patterns. We provide a comprehensive default risk assessment of structured credit products
and show that first moments are insufficient to reflect risk concentrations and systematic risk
sensitivity. To measure the systematic risk and to compare different fixed income products we
explain how to calibrate the Gaussian single risk factor model to replicate the risk profile of
a tranche. It turns out that the resulting asset correlations of loan equivalents of multi-name
derivatives are substantially higher than those of single-name instruments. Furthermore, as
mentioned above, buying assets with lower systematic risk and funding them by issuance of
assets with higher systematic risk offers arbitrage gains. We show how arrangers may utilize
pooling and tranching to increase arbitrage gains.

The rest of the article is organized as follows. In the next section we introduce our model
foundation. The section that follows presents classical risk measures for the center and tails of a
loss distribution. After that, in Section 4, we describe the aforementioned bond representation
of CDO tranches. In Section 5, we examine common pooling and structuring practices against
the background of systematic risk. Section 6 shortly discusses the role of diversification with
CDO investments. Section 7 concludes.

2 Setup

The following section focuses on presenting the model setup that is used for analyzing the risk
characteristics of CDOs.

2.1 CDO Model

A CDO is structured like a balance sheet. In a typical cash CDO a pool of assets (collateral
pool) is funded by issuance of debt securities (tranches). In a synthetic transaction a pool of
long credit risk protection is hedged by issuance of short credit risk tranches. We shall disregard
any principal cash flows here and focus on synthetic transactions. Note that this does not imply
any restrictions for our results. We map the collateral pool of defaultable names by means of
the de facto standard model in practice, the Gaussian single risk factor model.

Consider a portfolio comprising i = 1, . . . , N credit risky names. Each reference position is
represented by the terminal asset value Ri which is constructed as

Ri =
√

ρ ·M +
√

1− ρ · εi. (1)

M represents the market factor common to all obligors while εi is an individual innovation.
The parameter ρ is usually called asset correlation. It controls the relative relevance of the two
factors and thus turns out to be the correlation of any pair (Ri, Ri′), i 6= i′. ρ may thus be
interpreted as the degree of dependence of Ri on M. All names depend on M by the same level
of magnitude, i.e. ρi = ρ for all i. The factors M and εi are standard normal distributed and
independent. Thus, Ri is also standard normal distributed.

The default of obligor i is modeled as a threshold event, i.e. when Ri falls short of a specific
threshold ci the borrower is in default. This is modeled using the default indicator

Di := 1{Ri≤ci}, (2)
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where Di is unity if Ri ≤ ci and otherwise zero. For our later analyses it is useful to note that
ρ is a measure of dependence of Ri on M. In connection with the threshold model its meaning
is a little bit different. With respect to Di we may interpret ρ as a measure of sensitivity of Di
concerning M. This notion will be relevant in later sections.

Now, given the unconditional probability of default λi := P[Di = 1] = P[Ri ≤ ci] this
threshold can be backed out. So

ci = Φ−1(λi), (3)

where Φ (.) denotes the standard normal cumulative distribution function.
The structure of Ri establishes independence if conditioned on M. This may be useful in

computational terms. For example, given M, the portfolio default rate is an N-fold convolution
of independent random variables with (conditional) probabilities of default

λi(M) = P (Ri ≤ ci | M) = Φ

(
ci −
√

ρ ·M√
1− ρ

)
. (4)

This conditional PD will be relevant below. Note that as with Di, ρ also measures the degree of
sensitivity of λ(M) concerning M.

To obtain losses L from default counts or rates we additionally need information regarding
the loss given default (LGD) or equivalently the recovery rate RRi = 1−LGDi. We define LGDi
as the fractional loss of obligor i’s exposure at default EADi. It is assumed non-stochastic.

Based on this, the loss rate in the collateral pool can be calculated as

L =
N

∑
i=1

wi · LGDi · Di (5)

where exposure weights are given by wi = EADi
EAD with total exposure EAD =

N
∑

i=1
EADi.

2.2 Base Case CDO

Next, we introduce a base case CDO configuration.

Collateral Pool The asset side of the base case CDO has a maturity of T = 5 years. It com-
prises N = 100 corporate bonds rated BBB (λi = λ = 3.25% for all i) with equal notional weight
wi = w = 1/100. As assumed above, all names have uniform factor dependency ρi = ρ = 10%.
The recovery rate is also assumed homogeneous among obligors and set to a common level of
RRi = RR = 40% so that loss given default LGD = 60%. The following table summarizes this
configuration.

Parameter T N λ ρ w RR LGD

Level 5 100 3.25% 10% 1/100 40% 60%

Table 1: Asset pool configuration.
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Liability Structure The liability side of the transaction is structured into four tranches. Each
tranche (tr) is specified by attachment point a and detachment point b, respectively, with 0 ≤
a < b ≤ 1. Table 2 shows the details.

No. Tranche a b Rating

1 Equity 0% 4% -
2 Junior Mezzanine 4% 6.5% B
3 Senior Mezzanine 6.5% 11.5% BBB
4 Senior 11.5% 100% AAA

5 Pool 0% 100%

Table 2: Structure of liabilities.

The structure presented in Table 2 is based on the hitting probabilities of the tranches (for a
definition see Section 3.1.1). Ratings of tranches can be related to hitting probabilities as ratings
of corporate bonds are related to default probabilities.

3 Risk Measures for CDOs

Our major interest in this article revolves around measuring the objective (i.e. real-world) risks
of CDOs. In this section we analyze first and second order measures such as expected and
unexpected loss. As descriptive statistics always represent just a summary of certain distribu-
tional characteristics we have to consider several measures to get a full picture. In the next
three subsections we define these risk measures and then apply them to our sample CDO in
subsection four.

3.1 Rating-Based Risk Measures for CDOs

We start with the most relevant first order measures, probability of default (PD) and expected
loss (EL). These are the foundations of agency ratings (e.g. of Moody’s, Standard and Poor’s,
and Fitch).

3.1.1 Hitting Probability

The probability of default of a tranche is often referred to as its “hitting probability”. It is
defined as the probability that a tranche incurs first losses.

λtr = P (L > a) (6)

For example, Standard and Poor’s and Fitch determine ratings based on this measure.
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3.1.2 Tranche Loss

Given collateral pool loss rate L the loss incurred by a certain tranche (tr) = (a, b) with 0 ≤ a <
b ≤ 1 is calculated as

Ltr =
1

b− a
·
[
(L− a) · 1{a<L≤b} + (b− a) · 1{L>b}

]
=


0, L ≤ a
L−a
b−a , a < L ≤ b
1, L > b

(7)

In other words, a tranche (a, b) absorbs only pool losses in excess of a with limit b− a. Thus,
expected tranche loss is the expectation of the tranche loss rate.

E
(

Ltr) = P (L > b) +
1

b− a
·
∫ b

a
(l − a) dFL (l) (8)

Moody’s determines ratings based on this measure.

3.1.3 Tranche Loss Severity

The loss given default of a tranche is the random variable

LGDtr = Ltr | L > a. (9)

Its expectation is a common risk parameter

E
(
LGDtr) = E

(
Ltr | L > a

)
. (10)

3.2 Tail Measures

There is a large number of tail or downside risk measures like semivariance, value at risk or
expected shortfall. For most of these measures a decomposition is available which admits at-
tributing the contribution of a single constituent to the overall measure.

Value at Risk
The most widely used tail measure is value at risk (VaR). The Value at risk at confidence level
(1− α) ∈ [0, 1], VaR1−α (L), is the (1− α)-quantile of the loss distribution:

VaR1−α (L) = min {l ∈ [0, 1] : P (L ≤ l) ≥ 1− α} (11)

Losses as high as VaR1−α (L) or higher are defined to occur in α · 100% of all loss scenarios.

Expected Shortfall
Since VaR has several theoretical deficits the literature prefers expected shortfall ES1−α (L).
Expected shortfall at confidence level (1− α) is the expectation of loss above VaR1−α (L). It is
given as

ES1−α (L) = E (L|L > VaR1−α (L)) . (12)
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3.3 Analysis of Variance

Our factor model with a common systematic variable M lends itself to analysis of variance and
thus admits closer insights into the relevance of systematic and idiosyncratic risk.

V (L) = V [E (L | M)] + E [V (L | M)] (13)

That is, total risk as measured by variance can be decomposed into the variance of conditional
expectations and the expectation of conditional variances. The former is an absolute measure
of systematic risk.

The relative importance of the two variance components can be seen by division by V(L),
i.e.

V [E (L | M)]
V(L)︸ ︷︷ ︸

V∗[E(L|M)]

+
E [V (L | M)]

V (L)
= 100%.

(14)

Below, we only report the first term (the systematic component) as well as the total variance.

3.4 Results

Now we want to apply the risk measures introduced so far to the sample CDO of Section 2.2
and compare the tranches with the whole collateral pool. The latter can be considered as a
tranche with attachment points (a, b) = (0, 1). The tranche structure was introduced in Table 2,
the collateral pool configuration was shown in Table 1. The results are given in Table 3.

Tranche 1 2 3 4 Pool

a 0 0.04 0.065 0.115 0
b 0.04 0.065 0.115 1 1

λtr 0.8545250 0.1282040 0.0314680 0.0013850 0.8545250
E
(

Ltr) 0.4354460 0.0643830 0.0091760 0.0000310 0.0195130
VaR0.99

(
Ltr) 1 1 0.38 0 0.084

ES0.99
(

Ltr) 1 1 0.7213280 0.0220020 0.1045280

V
(

Ltr) 0.1087647 0.0448334 0.0051819 0.0000012 0.0003360
V
[
E
(

Ltr | M
)]

0.0655638 0.0245024 0.0027281 0.0000006 0.0002247
V∗
[
E
(

Ltr | M
)]

0.6028040 0.5465210 0.5264680 0.4579700 0.6686360

Table 3: Results: CDO risk measures.

The upper part of the table includes hitting probability, expected loss, VaR, and expected
shortfall for each tranche and the whole pool. The lower part contains the systematic part of
the variance analysis.

Let us start our interpretation with hitting probability. Hitting probabilities necessarily de-
crease when we move up the capital structure. The equity tranche incurs losses in 85% of cases
and the pool as a whole must necessarily have the same value. The other tranches have a signif-
icantly lower first loss risk, e.g., the senior tranche has only 13 basis points. This does not carry
over to expected loss. Clearly, the equity tranche always bears the highest level of expected loss

7



while portfolio EL is significantly lower. We see that expected loss decreases as we move up
the capital structure. The expected loss of our senior tranche is extremely low (3.1 · 10−5).

With respect to tail measures, we observe that VaR and ES are unity for the two lowest
tranches which is due to a significant mass singularity at Ltr = 100%. In other words, these two
tranches have a high “wipe-out” probability. For higher tranches both measures are increas-
ingly smaller. Note that for the senior tranche VaR equals zero since the hitting probability is
0.13% and 0.13% < 1% = α. Here, we recognize a deficit of quantile based tail measures as
they may be insensitive to the level of confidence.

To summarize, tranches may have significant tail risk as measured by VaR and ES. Espe-
cially for mezzanine tranches there is a large likelihood of total loss. Furthermore, we observe
a leverage effect between pool and tranches: junior tranches have significantly higher tail risks
in comparison to the whole pool while senior tranches may have clearly lower tail risks. Note,
however, that both VaR and ES do not reflect risk concentrations. For example, both the equity
tranche as well as the junior mezzanine tranche seem to carry the same tail risk although they
differ significantly in terms of expected loss. Similarly, as we will outline below, although both
tranches have different sensitivity to the systematic risk factor M, both have the same VaR and
ES. Thus, both measures fail to reflect systematic risk sensitivity.

Our last category of risk measures are variance based. Total variance V
[
Ltr] as well as

systematic variance V
[
E
[
Ltr | M

]]
are difficult to interpret in terms of their absolute value.

Nevertheless, they are appropriate for risk comparisons, e.g. of different securities with identi-
cal expected loss (cf. section 6).

4 Systematic risk characteristics of CDOs

In the last section we have studied several risk measures. We found that the tranches differ
clearly in terms of their risk profile both from each other as well as from the pool as a whole.
This suggests that bonds and tranches have intrinsically different risk profiles. In this section,
we show how to replicate the risk profile of a tranche by means of a standard bond model.

On the one hand, this offers additional insight into the systematic risk characteristics of
CDOs. It is often stated that classical bonds and CDO tranches are not comparable and that the
rating of the latter may hide important risk components. A bond representation provides an
opportunity to compare these two asset classes directly and admits straightforward integration
of CDO tranches into a static portfolio model.

4.1 Hitting Probability Profile

In the next two sections we study the default behavior of CDO tranches. First we calculate the
conditional hitting probability of a tranche given different values of M. We call this functional
dependence a hitting probability profile (HP-profile).

Figure 1 shows conditional hitting probabilities. Red points relate to the mezzanine tranche
of our base case and blue points relate to any of the collateral pool bonds. Note that although
both have a BBB rating, their risk profiles differ significantly.

Moving from positive (good) factor levels to negative (bad) factor levels (i.e. from right to
left) the curve of the tranche increases much faster than that of the bond. A positive economic
environment (large values of M) almost completely precludes a tranche hit while for the bond
some default risk remains. In such a positive scenario, small changes of M have little impact on
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Figure 1: HP-profiles of the BBB mezzanine tranche and a BBB bond.

a tranche’s hitting probability but modest influence on a bond’s probability of default. Thus,
CDOs seem to be more stable against macroeconomic changes.

However, this conclusion is misleading. If the systematic risk factor M falls into a certain
critical region (in our example above, this region is at about M = −2), CDOs turn out to be
extremely sensitive to an economic downturn. Because the steepness of the sensitivity curve is
visibly greater in the critical region, even small changes of M may lead to tremendous deterio-
ration of credit quality. In even worse economic conditions a hitting event is almost certain.

Actually, ratings for structured finance assets are thought to be more stable than corpo-
rate bond ratings. However, it is also acknowledged that if rating migrations do occur, these
changes are of a greater order of magnitude with tranches (see Jobst and de Servigny [2007]).
For instance, while rating changes of corporate bonds occur more frequently but only by one
or two notches, rating changes of CDO tranches occur seldom but if so they are by multiple
notches (see Moody’s Investors Service [2008]). In our opinion, the different sensitivity regard-
ing systematic risks can, at least to some extent, explain this phenomenon, that we see, for
example, in the current financial crisis.

But the hitting probability profile does not reflect all relevant risk characteristics. The loss
given default of a CDO is always a random variable which depends on the systematic risk
factor M too. Furthermore, loss distribution and sensitivity to systematic risk depend heavily
on the thickness of the tranche. Both is “disregarded” when using a hitting probability profile.
An alternative representation comprising these aspects is the expected loss profile E (Ltr | M).

4.2 Expected Tranche Loss Profile

The expected loss profile (EL-profile) is determined similar to the hitting probability profile.
We simulate a number of factor realizations and corresponding losses. Then we collect losses
with similar factor realizations and calculate the mean.

Figure 2 shows the EL-profiles of the BBB mezzanine tranche and also that of a BBB bond.
Again the differences of both curves are rather obvious. As with HP-profile, the pace of transi-
tion from zero to total loss is a measure of sensitivity to systematic risk. Moving from right to
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Figure 2: EL-profiles of the BBB mezzanine tranche and a BBB bond.

left the tranche profile rises much more steeply than the corporate bond profile.
Note that in our homogeneous case the expected loss profile of the whole collateral pool

is identical to that of any bond in the collateral pool. This means that, in absolute value, the
collateral pool and the bond contain exactly the same systematic risk. However, both differ
in terms of idiosyncratic risk. While each individual bond still carries a significant amount of
idiosyncratic risk the pool as a whole is rather name diversified, i.e. its variance is mainly due
to systematic factor movements.

Note that the expected loss profile is also beneficial for pricing considerations. Among oth-
ers, the price of a (defaultable) security depends on its expected loss as well as on the amount of
systematic risk. The EL-profile reflects both. Two credit products with identical EL-profiles are
exposed to identical default and systematic risks and therefore should realize the same market
prize (see Hamerle, Liebig, and Schropp [2009]).

4.3 Bond Representation

In a ”bond representation” the CDO tranche is treated as a single-name credit instrument
(i.e. a loan equivalent). The loan equivalent approach requires appropriate parametrization
to achieve a reasonable approximation of the tranche’s risk profile. We consider the tranche as
a ”virtual” borrower for which the single-factor model holds. Our first objective is to estimate
the ”virtual” asset correlation ρ̂tr of the CDO tranche. Since the tranche’s risk profile is given
by the EL-profile, our second objective is to approximate the EL-profile of the tranche (obtained
via simulation) by the corresponding EL-profile of the ”virtual” bond as accurately as possible.
In general we have the decomposition

E
(

Ltr | M
)

= λtr (M) ·E
(

LGDtr | M
)

(15)

In a first approach the HP-profile λtr (M) can be used in the bond representation. Consid-
ering a CDO tranche as a ”virtual” bond, the conditional hitting probability is expressed in the
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single-factor model as a function of M by

λtr(M) = Φ

(
ctr −

√
ρ̂tr M√

1− ρ̂tr

)
(16)

The default threshold ctr can be calculated using the unconditional hitting probability λtr given
in (6).

The only remaining parameter in (16) is the ”virtual” asset correlation ρ̂tr. This parameter
can now be determined in a way, that the function assigned in (6) approximates the simulated
HP profile as accurately as possible (see Hamerle, Jobst, and Schropp [2008] or Donhauser
[2010]).

Another approach stems from the rating agency Moody’s (see Yahalom, Levy, and Kaplin
[2008]). In this procedure the ”virtual” asset correlation ρ̂tr is calculated by assuming two iden-
tical CDO tranches with collateral pools containing different assets having same characteristics
concerning number and risks. Furthermore it is assumed that both tranches can be modeled us-
ing a single factor model with identical risk parameters. The ”virtual” asset correlation can then
be determined using the simulated joint default probability and the bivariate normal distribu-
tion from the single factor model. Both approaches provide identical results (see Donhauser
[2010]).

The main characteristic of both approaches is the goal of finding (the risk parameters of)
a ”virtual” bond whose conditional hitting probability matches the simulated HP-profile as
close as possible. To copy the EL-profile using the approaches above we need the conditional
expected loss given default of the tranche (see (15)), which can be calculated via stochastic sim-
ulation. An approximation using a common function is not possible without further complexity
and the assumtion of a constant expected LGD provides an insufficient approximation of the
EL-profile. Then again the bond representation aims to be as basic as possible and comparable
to approaches that are used for modeling traditional single-name products.

Therefore we introduce another approach. We start directly from the EL-profile on the left-

hand side of (15). Assuming a constant LG̃D
tr

we look for a ”virtual” bond whose conditional
hitting probability approximates the simulated EL profile as accurately as possible.

Using (15) the ”implied” hitting probability of the ”virtual” bond conditional on the sys-
tematic risk factor is then determined from

λ̃tr(M) =
E (Ltr | M)

LG̃D
tr . (17)

The tranche’s ”implied” unconditional hitting probability is given by

λ̃tr =
E (Ltr)

LG̃D
tr . (18)

The unconditional expected tranche loss E (Ltr) is also calculated in the course of in the simu-
lation and the default threshold ctr is

ctr = Φ−1 (λ̃tr) . (19)

In the next step, the tranche LGD, LG̃D
tr

, is determined as the maximum loss of the tranche.
The maximum loss of the collateral pool is given by

Lmax =
N

∑
i=1

wi · (1− RRi) (20)
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which reduces to Lmax = 1− RR = LGD for a homogenous portfolio.
Based on this, the maximum tranche loss of a tranche with attachment point a and detach-

ment point b is:

LG̃D
tr

=

{
min(Lmax ,b)−a

b−a , if Lmax > a
0, else

(21)

In general, LG̃D
tr

= 1 for all tranches except senior or super-senior tranches, i.e. LG̃D
tr

<
1 only for the tranche with the highest seniority (b = 1). For the non-senior tranches, the
”implied” hitting probability profile of the ”virtual” bond is equal to the EL-profile, while the

EL-profile is scaled up for the senior tranche with LG̃D
tr

< 1.
Finally, the ”virtual” asset correlation ρ̂tr is estimated by means of optimization

arg min
ρ̂tr

{
K

∑
k=1

[
λ̃tr (mk)− λ̂tr(mk)

]2
∣∣∣∣∣ ρ̂tr ∈ [0, 1]

}
(22)

where

λ̂tr(mk) = Φ

(
Φ−1 (λ̃tr)−√ρ̂tr ·mk√

1− ρ̂tr

)
, (23)

(mk)K
k=1 is a sufficiently accurate discretization of the support of M and λ̃tr(mk) are simulated

“implied” conditional hitting probabilities evaluated at mk.
In summary, a CDO tranche is approximated by a ”virtual” bond in a single factor model ac-

cording to (1), with ”virtual” probability of default λ̃tr, ”virtual” asset correlation ρ̂tr and LG̃D
tr

as ”virtual” loss given default of the bond representation. The approach ensures that the EL
profile of the ”virtual” bond resembles that of the simulated EL-profile of the CDO tranche.
As outlined above this bond representation based on the EL-profile is a more appropriate ap-
proximation of the default behavior and risk profile of the CDO tranche than an approximation
based on the conditional hitting probability (with fixed LGD).

4.4 Results

Applying the procedure described in the last subsection to our sample configuration yields the
results presented in Table 4.

Tranche a b λ̂tr LG̃D
tr

ρ̂tr σρtr MSE

Equity 0 0.04 0.435135 1 0.421919 0.005697 0.000231
Junior Mezzanine 0.04 0.065 0.064186 1 0.739621 0.000802 0.000008
Senior Mezzanine 0.065 0.115 0.009139 1 0.753105 0.000520 0.000006

Senior 0.115 1 0.000056 0.548023 0.321983 0.003523 0.002821
Pool 0 1 0.032490 0.6 0.100016 5.90e-06 3.23e-08

Table 4: Approximation results for the bond representation

Several points are worth mentioning. First, the difference between λ̃tr and λtr as reported
in Table 3 derives from the fact that we fit to λ̃tr(M) instead of λtr(M). Assuming the constant
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LG̃D
tr

implies that the hitting probability of the bond representation has to be lower than the
original hitting probability. For instance, the equity tranche has λEquity = 0.854 but λ̃Equity =
0.435. Next, we see that the calibrated asset correlations of all tranches are higher than for the
pool as a whole. The highest “correlation leverage” can be observed with mezzanine tranches
while equity and senior tranches are more moderate. The reason for the latter is that equity
tranches suffer the majority of expected losses (which occur in both good and bad times). On
the other end of the capital spectrum, the senior tranche carries the end of the pool loss tail and
is thus driven by unexpected losses. Nevertheless, due to its usually large notional share (in
our case 100%− 11.5% = 88.5%) its calibrated ρ̂tr is lower than that of the mezzanine tranches.

Now, how good is our approximation? To answer this question we measure goodness of fit
by means of mean squared error defined by

MSE =
1
K

K

∑
k=1

[
λ̃tr(mk)− λ̂tr(mk)

]2
. (24)

The results in Table 4 show that mezzanine tranches can be better approximated than the
lowest and highest tranche. This is purely due to a lack of functional flexibility of the Gaussian
copula model. Being point symmetric about its inflection point the Gaussian conditional PD
model is perfectly able to reproduce the profiles of mezzanine tranches. Because of their posi-
tion at the ends of the capital structure the equity as well as the senior tranche profile do not
fulfill the symmetry criterion. Therefore, the goodness of fit of these tranches is less satisfactory.
The pool is particularly well approximated. Figure 3 shows real (i.e. collateral pool simulation
based) profiles and fitted profiles. The graphs fully reflect the results of MSE calculation.
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Figure 3: Goodness of fit of approximated conditional expected loss. Dotted lines: real condi-
tional expected loss, solid lines: fitted conditional expected loss.
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5 Structures Boosting Systematic Risks

In the last section we showed the leverage effect of tranching on systematic risk and provided
a bond representation of CDO tranches. In this section we examine the consequences on past
pooling and structuring practice.

5.1 Systematic Risk and CDO-Pricing

CDOs transform collateral pool loss distributions into new and different loss distributions.
Risks are completely reallocated. The hitting probability and expected loss of a large por-
tion of the capital structure are distinctly lower than for an average collateral pool asset. It
is known that many investors based their investment decisions mainly on the ratings of the
CDO tranches. The ratings rely on assessment either of hitting probabilities or of expected
losses due to default. However, measures of default probability or expected loss do not take
account of the states of the economy in which the losses occur. But it is also well known that
systematic risk is price relevant. Therefore, depending on their exposure to systematic risks,
securities with identical credit ratings can trade at very different prices and command a wide
range of yield spreads.

In the last section we discussed the leverage effect of tranching on systematic risk and
showed that the systematic risk of all tranches rises dramatically. This indicates that investors
should receive much higher spreads for their investments in CDOs as a risk premium than that
which they are paid on corporate bonds with identical credit ratings. However, this was not the
case in the years prior to inception of the financial crisis (see Brennan, Hein, and Poon [2009]).
Due to rising demand for structured credit products the spread differences between CDOs and
corporate bonds with comparable ratings narrowed. In some cases the spreads of corporate
bonds were even higher than the spreads of corresponding tranches. If investors are guided
solely by the tranches’ ratings in their valuation process and ignore the increased systematic
risk, there is a general way to CDO arbitrage. In this case, it is advantageous for the CDO
arranger to put together the collateral pool in such a way that the tranches create securities
with high systematic risk. If the tranches can be sold at prices comparable to those of corporate
bonds with same ratings, a maximum profit potential for the arranger is implied. For details
see Hamerle, Liebig, and Schropp [2009].

In the following we describe some possibilities of generating tranches with high systematic
risk. It comes as no surprise that precisely these types of transactions can be found in many
CDOs issued prior to the outbreak of the financial crisis.

5.2 Collateral Pool Diversification

A frequently stated benefit of CDOs or ABS is the fact that the investment is already diversi-
fied (see Fitch Ratings [2008a]). Pooling reduces idiosyncratic loss variance and becomes more
effective the larger the pool is and the less heterogeneous the pool constituents are. These are
standard results from portfolio theory. Questionable, however, is whether a diversified invest-
ment is really a benefit to the investor. Our previous results suggest that the systematic risk of
tranches increases as pool diversification increases.

We want to examine this now. To that end, we compare tranche risk measures of the N =
100 pool with those of an N = 1000 pool as well as with an infinitely fine grained pool (N → ∞).
Since increasing the number of names changes PD as well as EL (and thus the rating) of each
tranche, we have to modify the capital structure in order to maintain comparability. The idea
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is that tranche comparisons are only useful when they bear the same level of expected loss.
Thus, starting from the highest tranche we change attachment points in a way that each tranche
obtains the same expected loss E (Ltr) as the corresponding tranche in the base case with N =
100. The equity tranche cannot be compared since its attachment point is fixed (a = 0). The
infinitely fine grained case is known as Vasicek approximation and renders computation of risk
measures often significantly easier. Table 5 shows the resulting risk measures.

Tranche 1 2 3 4 Pool

N = 1000

a 0.000 0.036 0.059 0.101 0.000
b 0.036 0.059 0.101 1.000 1.000

λtr 0.9984310 0.1274960 0.0272250 0.0017100 0.9984310
E
(

Ltr) 0.4923910 0.0643760 0.0091550 0.0000310 0.0195030
VaR0.99

(
Ltr) 1 1 0.3604350 0 0.0738000

ES0.99
(

Ltr) 1 1 0.6686230 0.0179260 0.0896710
V
(

Ltr) 0.0829043 0.0315945 0.0028030 0.0000005 0.0002364
V
[
E
(

Ltr | M
)]

0.0777922 0.0288771 0.0025666 0.0000004 0.0002252
V∗
[
E
(

Ltr | M
)]

0.9383375 0.9139929 0.9156945 0.8963110 0.9526432
λ̂tr 0.4924453 0.0643278 0.0091739 0.0000559 0.0325076
ρ̂tr 0.4896021 0.9195403 0.8969803 0.3296629 0.0999921

Ltr
max 1 1 1 0.5551323 0.6000000

N → ∞

a 0.000 0.035 0.058 0.099 0.000
b 0.035 0.058 0.099 1.000 1.000

λtr 1 0.1270540 0.0270495 0.0017655 1
E
(

Ltr) 0.5001338 0.0643764 0.0091725 0.0000306 0.0195000
VaR0.99

(
Ltr) 1 1 0.3568718 0 0.0726457

ES0.99
(

Ltr) 1 1 0.6843768 0.00330547 0.0890376
V
(

Ltr) 0.0795542 0.0299154 0.0025724 0.0000004 0.0002247
V
[
E
(

Ltr | M
)]

0.0795542 0.0299154 0.0025724 0.0000004 0.0002247
V∗
[
E
(

Ltr | M
)]

1 1 1 1 1
λ̂tr 0.5001338 0.0643764 0.0091725 0.0000550 0.0325
ρ̂tr 0.4995689 0.9422924 0.9152650 0.3312429 0.1000

LG̃D
tr

1 1 1 0.5559412 0.6000

Table 5: Risk measures for different portfolio sizes: N = 1000 and N → ∞.

First, the estimates of ρ̂tr show a clear increase in comparison with the base case which
means that tranche sensitivity is higher for N = 1000 and still higher for N → ∞. Our rela-
tive variance measure additionaly signals that all tranches have virtually no idiosyncratic risk
for N = 1000. Almost the whole tranche loss variance is driven by the systematic factor. For
N → ∞ the variance is purely systematic. This, however, does not implicate a reduction of the
investor’s portfolio variance. Instead, it means higher risk concentration. In other words, di-
versification in the pools underlying a CDO tranche implies concentration risk in the investor’s
portfolio. We refer to Section 6 as well as Hamerle and Plank [2009] for a more detailed analysis
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of diversification and risk concentration with CDOs.

5.3 ABS CDOs

In our previous analysis we have shown that CDO tranches bear significant systematic risk.
Thus, we may hypothesize that CDOs including tranches in the collateral pool have still higher
systematic risk exposure. Such double layer structures are known as CDOs of ABS, ABS CDOs
or Structured Finance CDOs (SF CDOs).

We shall investigate this hypothesis now. Exact calculation of the loss distribution and risk
measures of ABS CDOs is usually burdensome. Our bond approximation admits a simplified
solution. First, given a pool configuration we determine λ̂tr and ρ̂tr of our tranches. These
are the so called “inner” CDOs which form the collateral pool of an “outer” CDO. Thus, our
second step is to simulate a portfolio of bonds with λ̂tr and ρ̂tr. Based on this, we determine
risk measures for the capital structure of the outer CDO (the ABS CDO tranches).

For our ABS CDO we chose a collateral pool with the following composition as shown in
Table 6.

Parameter Mezzanine RMBS BBB Bond

Absolute Amount 70 30
Notional Share 70% 30%

Rating BBB BBB
PD 0.9139% 3.25%
ρ 75.31% 10%

LGD 100% 60%

Table 6: ABS CDO collateral pool composition.

We do not choose a pure RMBS pool as market practice was to mix bonds and RMBS (see
Bank for International Settlements [2008]). The asset pools underlying the RMBS comprise 100
BBB bonds as shown in the right column. Thus, these bond types are used as collateral pool for
the inner CDOs and also as 30% of the collateral pool of the outer CDO. However, bonds in the
collateral pool of the outer CDO are assumed to be driven by a separate, uncorrelated factor M̃.
Bonds in the inner CDOs’ collateral pools are driven by M.

As above, the capital structure of the outer CDO is chosen top down so that expected
tranche losses of senior and mezzanine tranche equal those of the base case (Table 4). Thus,
all tranches except for the equity tranche of ABS CDO and base case CDO are comparable. The
structure is given in Table 7.

No. Tranche a b

1 Equity 0% 2%
2 Mezzanine 2% 63.2%
3 Senior 63.2% 100%
4 Pool 0% 100%

Table 7: Outer CDO structure based on expected tranche loss.
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We omit a junior mezzanine tranche here. Interestingly, the senior tranche demands much
higher subordination to achieve base case levels of expected loss. This in turn suggests ex-
treme tails of the ABS CDO loss distribution. As a result of such high senior subordination the
mezzanine tranche is extremely large.

The resulting risk measures are shown in Table 8.

Tranche Equity Mezzanine Senior Pool

a 0 0.02 0.632 0
b 0.02 0.632 1 1

λtr 0.5892880 0.1026500 0.0003280 0.5892880
E
(

Ltr) 0.3332090 0.0090900 0.0000330 0.0122400
VaR0.99 (Ltr) 1.0000000 0.2614380 0.0000000 0.1800000
ES0.99 (Ltr) 1.0000000 0.5038230 0.1005930 0.3295660

V
(

Ltr) 0.1173862 0.0038131 0.0000155 0.0016823
V
[
E
(

Ltr | M
)]

0.0581641 0.0036870 0.0000134 0.0016052
V∗
[
E
(

Ltr | M
)]

0.4954930 0.9669400 0.8652660 0.9542100

λ̂tr 0.3336270 0.0090386 0.0000490 0.0138822

LG̃D
tr

1.0000000 1.0000000 0.6739130 0.8800000
ρ̂tr 0.4661735 0.8271813 0.5554627 0.5547004

Table 8: Risk measures for the ABS CDO.

We see clearly increased bond correlation estimates ρ̂tr. Tail risk measures of the senior
tranche and pool are much higher than for the base case. For instance, for the collateral pool ES
is 0.10 for the base case and 0.32 for the ABS CDO. For the mezzanine tranche ES and VaR are
lower which is certainly due to the comparatively large size. Finally, from V∗

[
E
(

Ltr | M
)]

we
see that both mezzanine as well as senior tranche are almost exclusively driven by systematic
risk.

As recently pointed out by Fitch Ratings [2008b] as well, we may summarize that ABS CDOs
imply an even higher level of systematic risk sensitivity. We find this fact in tail measures, bond
approximation parameters, as well as variance measures.

5.4 Thin Tranches

As we saw in the last sections, systematic risk on the asset side can be increased by (1) increasing
the pool size and (2) choosing assets with higher systematic risk. In this subsection we turn to
the liability side.

Donhauser [2010] shows the effect of subordination and tranche width on their sensitivity to
systematic risks in detail. In summary the subordination ”only” affects a tranche’s probability
to be hit by losses. The longer the tranche is protected against losses in the collateral pool
(the higher the subordination of the tranche is), the smaller the resulting hitting probability
will be. Reducing the attachment point without changing the tranche width shifts the EL-
profile towards better (more positive) realizations of the systematic risk factor. Thereby the
steepness of the profile is almost unaffected. In contrast to the degree of subordination, the
tranche width does affect the systematic factor sensitivity. The smaller the tranche width is, the
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bigger becomes the contribution of a single hitting event to the tranche loss rate. So the slope
of the profile increases with diminishing tranche width.

In practice senior tranches are very wide and mezzanine tranches are usually thin. Very thin
tranches (so called “tranchelets”) became increasingly popular in recent times. As described by
Tavakoli [2008] sometimes a thin AAA tranche was cut at the bottom of the senior tranche
making the superordinate tranche even more safe. That’s why it is called “super senior”. We
are interested in how these structurings affect the risk measures of the resulting tranches. To
that end we split the mezzanine tranche (a, b) = (0.065, 0.115) into five tranchelets with 1%
width. Furthermore, we form an additional 5% tranche at the bottom of the senior tranche.

The risk measures of the new tranchelets are shown in table 9.

Parameter
Original

Mezzanine
Tranche

Mezzanine
Tranchelets

a 0.065 0.065 0.075 0.085 0.095 0.105
b 0.115 0.075 0.085 0.095 0.105 0.115

λtr 0.0315800 0.0315800 0.0157320 0.0078520 0.0055700 0.0028320
E
(

Ltr) 0.0091080 0.0210190 0.0120310 0.0066170 0.0037190 0.0021570
VaR0.99

(
Ltr) 0.38 1 0.9 0 0 0

ES0.99
(

Ltr) 0.7222750 1 1 0.8546870 0.6758710 0.7686790

V
(

Ltr) 0.0051585 0.0183948 0.0106270 0.0060093 0.0033259 0.0019329
V
[
E
(

Ltr | M
)]

0.0027287 0.0083803 0.0046377 0.0024539 0.0013101 0.0007258
V∗
[
E
(

Ltr | M
)]

0.5289730 0.4555780 0.4364090 0.4083530 0.3939260 0.3755060

λ̂tr 0.0092140 0.0212780 0.0121400 0.0067110 0.0037650 0.0021770

LG̃D
tr

1 1 1 1 1 1
ρ̂tr 0.7517390 0.7966750 0.8084510 0.8184150 0.8247900 0.8313230

Table 9: Risk measures for thin mezzanine tranches.

Table 9 and table 10 show the risk measures for the original tranches as well as the new
(thinner) tranches.

Most importantly, from ρ̂tr we see that the systematic sensitivity of the new tranches is
significantly higher. For the mezzanine tranches it rises from 0.75 for the original mezzanine
tranche to 0.8 on average for the tranchelets. The same holds true for the senior tranches where
the original senior tranche has ρ̂tr = 0.32 while the new senior tranche shows an asset correla-
tion of ρ̂tr = 0.81. A similar result is reflected by our relative variance measure.

To summarize, we find that systematic risk factor sensitivity decreases with tranche width.
This represents potential for a wider funding gap.

6 Diversification and Concentration of Risk

So far, we found that CDO tranches generally carry high systematic risk. We hypothesized that
although the underlying pool of a CDO may be highly diversified, this does not apply to the
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Parameter
Original
Senior

Tranche

New
Senior

Tranche

Super
Senior

Tranche

a 0.115 0.115 0.165
b 1 0.165 1

λtr 0.0013810 0.0013810 0.0000940
E
(

Ltr) 0.0000310 0.0005160 0.0000020
VaR0.99

(
Ltr) 0.0000000 0.0000000 0.0000000

ES0.99
(

Ltr) 0.0226460 0.3721510 0.0252260

V
(

Ltr) 0.0000012 0.0002974 0.0000001
V
[
E
(

Ltr | M
)]

0.0000006 0.0001264 <0.0000001
V∗
[
E
(

Ltr | M
)]

0.4579000 0.4251280 0.3825020

λ̂tr 0.0000570 0.0005140 0.0000050
ρ̂tr 0.3209300 0.8083430 0.3867380

LG̃D
tr

0.5480230 1.0000000 0.5209580

Table 10: Risk measures for thin senior tranche and super senior tranche.

investor portfolio the CDO is part of. Indications for this proposition were seen in the high
asset correlation of the CDO’s bond representation.

We want to elaborate on this in more depth. To that end, we compare four different homoge-
nous investment portfolios containing 100 respectively 200 similar securities. A pure bond port-
folio, a pool of pro-rata bond-portfolio investments, a portfolio of CDO tranches and a portfolio
of ABS CDO tranches. We do that for two different levels of expected loss, each linked to a rat-
ing of either BBB or AAA. The attachment and detachment points are set to match the desired
level expected loss. Note that the first four alternatives have equal expected losses as do the
second four alternatives. The CDOs are backed by BBB bonds and the ABS CDOs are backed
by a pool of mezzanine CDO tranches. Both CDOs and ABS CDOs are modelled as ”loan-
equivalents”. Altogether, we compare eight different investment alternatives. In the following
all the investment alternatives are described in detail.

1. The first portfolio comprises BBB-rated corporate bonds. As in the sections before, this
goes along with a probability of default of 3.25%, a loss severity that is set to LGD = 60%
and an assumed asset correlation of ρ = 10%. Thus the expected loss is E (L) = 1.95%.

2. The second case is an pro rata investment into a pool of homogenous bond-portfolios.
Each portfolio comprises 100 corporate bonds with risk parameters as described in alter-
native 1. So the expected loss is E (L) = 1.95% too.

3. Alternative number three is an investment into a pool of mezzanine CDO tranches with
a=6% and b=8.6%. The collateral pool the tranche is related to, is identically composed
to alternative 1. The tranches are modelled as loan-equivalents with parameters being
calibrated as shown in section 4.3. This leads to a virtual asset correlation of ρ̂tr = 77.59%.
By choosing the attachment point a=6% this alternative has a virtual default probability of
1.95%. In connection with the detachment point b=8.6% and the virtual loss given default
of 100% the expected loss equals 1.95% as well.
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4. The investment alternative number four is an investment into a pool of BBB-rated ABS-
CDO tranches. Each of these second layer tranches is backed by 100 mezzanine CDO
tranches as presented in alternative 3. For this case we find a virtual asset correlation of
ρ̂tr = 97.57%. To achieve expected loss neutrality we choose a=17.5% which provides an

implied hitting probability of λ̃tr = 1.95%. With b=46.7% and LG̃D
tr

= 100% the expected
loss is once more set to E (L) = 1.95%.

5. The portfolio of investment alternative number five comprises AAA-rated corporate bonds.
This is linked to a default probability of 0.15%. The loss given default is set to LGD = 60%
and the asset correlation is assumed to be ρ = 10%. Thus the resulting expected loss of
holding this portfolio is E (L) = 0.09%.

6. Equally as for alternatives 1 and 2, in the sixth case we consider an pro rata investment
into a pool of homogenous bond-portfolios (each including 100 corporate bond positions),
that are equally composed to those presented in alternative 5. So the expected loss is
E (L) = 0.09% too.

7. The portfolio of investment alternative seven consists of AAA-rated senior CDO tranches.
The tranches are linked to the collateral pool introduced in case 3 of this list. The implied
parameters for simulating this investment are a = 5.52%, b = 100%, ρ̂tr = 21.34%, λ̃tr =
0.156% and LG̃D

tr
= 57.66%. So the expected loss of 0.09% is equal to those of alternatives

5 and 6. Note that the tranches of case 3 and 7 are linked to identical collateral pools. The
resulting structures are set just to gain the desired levels of expected loss. The overlap of
the two tranches therefore does not bother because we do not look at two tranches of the
same capital structure here.

8. The eighth and last alternative is an multi-layer investment into a portfolio of AAA-rated
ABS-CDO tranches, each backed by a pool of 100 mezzanine CDO tranches as presented
in alternative 3. The expected loss of 0.09% is accomplished by setting a = 87.1%, b =
100%, ρ̂tr = 95.8%, λ̃tr = 0.09% and LG̃D

tr
= 100%.

We aim at comparing alternative 1 to 4 and 5 to 8. The resulting risk measures of the portfo-
lio alternatives can be compared in Table 11. We show the two different portfolio sizes N = 100
and N = 200.

As the most important result, we find that tail risk measures are signficantly higher for CDO
tranche portfolios than for bond pools. For example, VaR of alternative (1) and (2) is about 8%
but 49% and 93%, respectively, for alternative (3) and (4). The same holds true for the high grade
alternatives (5-8). However, for alternative (8) and N = 100 we see again the insensitivity issue
as discussed above (i.e. the confidence level is too low). Expected shortfall is more reliable
here and shows clearly increased values for the tranche portfolios. Our variance measures
agree with these findings. They are consistently higher for tranche portfolios. In addition,
relative systematic variance is very high for all portfolios except for the pure bond portfolios
(1) and (5). It is important to note that although these portfolios seem highly diversified since
V∗ [E (L | M)] is close to unity for alternatives (2), (3), (4) and (6), (7), (8), they bear different
levels of systematic risk. From the tail risk measures in connection with the relative variance
measure we see that alternatives (2) and (6), the pro-rata bond pool investments, are name
diversified as well as with moderate systematic risk, while (3), (4) as well as (7), (8) are name
diversified but still carry high systematic risk.
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Alternative 1 2 3 4 5 6 7 8

N = 100

E (L) 1.95% 1.95% 1.95% 1.95% 0.09% 0.09% 0.09% 0.09%
VaR0.99 (L) 8.4% 7.26% 49% 93% 1.2% 0.56% 1.15% 0%
ES0.99 (L) 10.52% 8.80% 70.1% 99% 1.98% 0.78% 2.21% 21.69%

V(L) 0.034% 0.022% 0.74% 1.48% 0.0007% 0.0001% 0.0010% 0.056%
V [E (L | M)] 0.022% 0.022% 0.73% 1.48% 0.0001% 0.0001% 0.0005% 0.056%
V∗ [E (L | M)] 66.90% 100% 98.41% 99.72% 19.89% 100% 47.19% 99.39%

N = 200

E (L) 1.95% 1.95% 1.95% 1.95% 0.09% 0.09% 0.09% 0.09%
VaR0.99 (L) 7.8% 7.26% 48.5% 93.5% 0.9% 0.56% 1.15% 0%
ES0.99 (L) 9.61% 8.80% 69.20% 99.1% 1.39% 0.78% 1.99% 19.59%

V(L) 0.028% 0.022% 0.74% 1.49% 0.0004% 0.0001% 0.0007% 0.056%
V [E (L | M)] 0.022% 0.022% 0.73% 1.49% 0.0001% 0.0001% 0.0004% 0.056%
V∗ [E (L | M)] 80.19% 100% 99.19% 99.86% 33.11% 100% 64.05% 99.69%

Table 11: Risk measures of investment alternatives.

To summarize risk concentrations in tranche portfolios are significantly higher than in nor-
mal bond portfolios. Thus, CDO investments implicate that idiosyncratic risk is highly diver-
sified but concentration risk is built up. A more detailed discussion of this topic can be found
in Hamerle and Plank [2009].

7 Conclusion

In this article we extensively examined systematic risks with CDOs. We compared risk mea-
sures of bonds and CDOs and showed that tranching produces securities with high systematic
risk. Furthermore, we investigated drivers of systematic risk with CDOs. On the asset side,
increasing the number of names and choosing assets with high systematic risk increases the
systematic risk of resulting tranches. In particular CDOs based on collateral pools comprising
CDO tranches are very sensitive to systematic factors. On the part of the liability structure we
showed that smaller tranches are more systematic risk sensitive. Finally, we shortly addressed
the myth of the benefit of CDO diversification. CDO investments are name diversified but
contribute significantly to risk factor concentrations.
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