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Abstract

State-of-the-art credit risk portfolio models as well as the New Basel Capital Accord con-
sider only symmetric dependencies between borrowers in a portfolio, such as correlations.
Recently, asymmetric dependencies have been introduced by Davis/Lo (2001) among
others. However, statistical estimation techniques and empirical evidence on contagion
are still rather scarce. The present paper provides a simple credit risk portfolio model
extension to credit contagion and shows how its parameters can be easily estimated and
tested. We apply our methodology to a dataset provided by Moody’s Default Risk Service
and find significant contagion effects. By sensitivity analyses we show how contagion can
seriously affect credit losses.
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1 Introduction

Among the most important positions on the asset side of a financial institution’s balance
sheet are credit risky securities, and a major task for risk managers and analytics is the
appropriate modeling and forecasting of the inherent credit risk. Typically, banks and other
institutions apply credit risk models for this purpose, either purchased from a vendor such as
CreditMetrics or CreditRisk+ or internally developed, see e.g. Finger (1998), Credit Suisse
First Boston (1998), or Bluhm/Overbeck/Wagner (2003) for overviews. Credit risk models
use borrower default probabilities, losses given default, exposure sizes, correlations among
borrowers, and other parameters as input variables, and derive forecasts for loss or market
value distributions using analytical approaches or simulation techniques.

A common feature of most state-of-the-art credit risk models is the treatment of the depen-
dencies between borrowers in a symmetric way, e.g. via correlations, dependencies on common
risk factors or more general dependency measures in a copula framework. As many studies
show, the strength of dependency crucially affects the shape of the derived distributions and
key risk figures such as Value-at-Risk or Expected Shortfall, see Frey/McNeil/Nyfeler (2001)
and Hamerle/Rösch (2005). This symmetric view can also be found in the New Basel Capital
Accord where a key driver for banks’ regulatory capital is correlation, see Basel Committee
on Banking Supervision (2004).

More recently, researchers and practitioners have argued that, besides symmetric dependencies
due to common risk factors, asymmetric dependencies might exist as well. These effects are
often called infection or contagion effects because the dependency works in one direction only.
For example, the default of a large automobile company might cause financial distress for its
suppliers, while conversely the automobile company might not be affected by a default of one
of its suppliers.

One of the first models that explicitly model credit contagion was developed by Davis/Lo
(2001, DL hereafter). They consider a portfolio where the default of any company may infect
any other company in the portfolio. Under this kind of contagion, the portfolio loss distribu-
tion can easily be derived. An extension of the model is provided by Egloff/Leippold/Vanini
(2004), who use neural-network-like connections between borrowers which allow for a variety
of inter-firm infections. However, this model cannot be as easily applied in practice as the
simple DL model because detailed information regarding the microstructural dependencies is
needed. Another model by Neu/Kühn (2004, NK hereafter) incorporates contagion effects
into a CreditMetrics-like credit risk model, thereby linking contagion with state-of-the-art
models.

The DL and NK models build the starting point for our analysis. We first discuss some
limitations of the former model when it is applied to real-world data. Then, we develop a
simple contagion extension of factor models that are used in most credit risk models. The
extension is similar to NK, but is not as portfolio constrained as their approach.

Our main contribution consists of deriving a framework for empirical estimation and calibra-
tion of contagion effects. We apply our methodology to rating data from Moody’s Default
Risk Service and conduct sensitivity analyses. Our main findings are that contagion effects
are significant and can seriously affect loss distributions.
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The rest of the paper is organized as follows: Section 2 provides a short discussion of the DL
model. In section 3 we describe our contagion model extension of usual credit factor models
and derive the estimation framework. Section 4 provides a description of the data used for
our analysis and presents the empirical results. Section 5 concludes.

2 Reviewing the Davis/Lo-Model

Davis/Lo (2001) were among the first to model contagion effects in a bond portfolio. They
assume that any bond may default either directly or may be infected by any defaulting bond
in the portfolio. p denotes the probability of a direct default, n the number of bonds in the
portfolio, and q the probability with which a defaulting bond infects another bond. Then the
expected default rate E [DR] in a portfolio equals:

E [DR] = 1− (1− p) (1− pq)n−1 . (1)

As can be taken from equation (1) the expected default rate depends not only on the pa-
rameters p and q but also on the portfolio size n. Therefore, these parameters cannot be
interpreted on a stand alone basis. The probability of any firm to be infected, and thus the
expected default rate of the portfolio, increases with the number of firms in the portfolio.

Despite its intuitiveness and simplicity, the model has some limitations when applied to real-
world portfolios. First of all, it is assumed that all bonds within a portfolio may be infected
by other bonds in the same portfolio only. In reality, contagion effects cross portfolio borders.
Bonds outside the portfolio are not considered in the model. When two identical portfolios
consisting of 50 bonds each (e.g. p = 5% and q = 5%, expected default rate according to
model: 15.97%) are combined into a single portfolio (n = 100), the model results in a jump
of the expected default rate to 25.85% for constant parameters p and q. This result indicates
that the model holds only in a portfolio of firms with no connections to firms outside the
portfolio.

Another shortcoming becomes apparent when estimating the unknown parameters p and q
from an empirical time series of defaults. The parameters can easily be estimated from
historical data e.g. by maximum-likelihood estimation. However, if the portfolio size varies
over time the resulting parameter estimates cannot be interpreted. Another constraint is the
mathematical operability. The distribution function requires the computation of a sum of
binomial coefficients which becomes cumbersome for large portfolios.

In the following, we propose an alternative credit contagion model which can be estimated
from historical data, is mathematically simple, and can be applied to portfolios of every size.

3 The Models

3.1 Standard Credit Risk Factor Model Specification

Our model is an extension to one of the most popular credit factor representations as it is
used in CreditMetrics and also in the Basel II Capital Accord. We assume a default mode
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frame-work with a discrete-time horizon. Consider a continuous variable Ri,t of borrower i
in time period t (i ∈ It, t = 1, . . . , T ) which may be interpreted as some creditworthiness
index, e.g. the return on the firm’s assets. It is the set of firms in time period t. Then the
credit default event is modeled as the event that the creditworthiness of the firm crosses some
threshold ci, i.e.

Ri,t < ci ⇔ Di,t = 1, (2)

where:

Di,t =

{
1 borrower i defaults in period t

0 otherwise
(3)

is the default indicator (i ∈ It, t = 1, . . . , T ). In the CreditMetrics (and the Basel II)
framework the creditworthiness indexes are assumed to follow Gaussian copulas, that is:

Ri,t =
√
ρ · Ft +

√
1− ρ · Ui,t (4)

where Ft ∼ N (0, 1) and Ui,t ∼ N (0, 1) are both normalized i.i.d. random variables and
independent from each other (i ∈ It, t = 1, . . . , T ). Ft is a systematic risk factor which drives
all credit qualities jointly while Ui,t are idiosyncratic, borrower-specific risk factors.

√
ρ is the

factor loading of the systematic factor with ρ representing the asset correlation.

Given a realization of the systematic risk factor, the conditional probability of default is:

πi (ft) = P (Ri,t < ci|Ft = ft) = Φ
(
ci −
√
ρ · ft√

1− ρ

)
(5)

with expectation (the ”probability of default”):

πi =
∫ ∞
−∞

Φ
(
ci −
√
ρ · ft√

1− ρ

)
dΦ (ft) = P (Ri,t < ci) = Φ (ci) (6)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.
In the following, we assume for ease of exposition that the borrowers are homogenous w.r.t.
the parameters c and ρ within a risk segment.

3.2 Credit Contagion

We now assume that, besides a set of firms which follow the above standard specification, a
distinct set of firms exists. These firms additionally depend upon the first group via credit
contagion. That is, default events in the first group infect firms in the second group, causing an
increase of their default probabilities but not vice versa. All firms can be assigned to either the
infecting firms (”I-firms”) or infected firms (”C-firms”). This strict ex ante segmentation,
which is also used by Jarrow/Yu (2001), eliminates looping defaults. Let It be the set of
infecting firms at time t, and N I

t be their cardinal number, i.e. N I
t = |It|. The process for

the infecting firms is then given as above by (i ∈ It, t = 1, 2, . . . , T ):

RIi,t =
√
ρ · Ft +

√
1− ρ · Ui,t. (7)
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Analogously, let Ct be the set of infected firms at time t, and NC
t be their number. Then

we extend the standard factor specification for the infection of the second group of firms to
(j ∈ Ct, t = 1, 2, . . . , T ):

RCj,t =
√
ρ · Ft +

√
1− ρ · Uj,t − β ·

∑
i∈It

DI
i,t(ft)

N I
t

=
√
ρ · Ft +

√
1− ρ · Uj,t − β ·

DI
t (ft)
N I
t

. (8)

DI
t (ft) =

∑
i∈It

DI
i,t(ft) is the number of defaulting infecting firms at time t, β denotes an

unknown coefficient that measures the impact of contagion on the default probability. The
effect of contagion on firm j is then β times the default rate of the infecting firms. Note that
if β equals zero there is no contagion at all and the model reduces to the standard factor
model.

While the probabilities of default for the infecting firms are still given by the ”autonomous”
probabilities (5) and (6), the probabilities of default of the infected firms now depend addi-
tionally on the default rate of the contaminating firms. Conditional on the risk factor and
the number of defaulting infectors DI

t (ft) = dIt (ft), one obtains the conditional probability:

πC
(
ft, d

I
t (ft)

)
= Φ

c−√ρ · ft + β · d
I
t (ft)

NI
t√

1− ρ

 . (9)

Therefore, the default probabilities of the infected firms increase with the contagion coeffi-
cient β.

3.3 Model Estimation

After outlining the model framework, we will calibrate the models from observed data. We
suggest a maximum-likelihood approach. For standard factor models, i.e. without contagion,
this approach has been used e.g. by Gordy/Heitfield (2000) for the Gaussian specification of
CreditMetrics, or Frey/McNeil (2003) and Hamerle/Rösch (2007) for other Bernoulli mixture
models, as used by CreditRisk+ or CreditPortfolioView.

The likelihood is based on the respective probabilities of observing particular numbers of
defaulted infectors and defaulted infected firms. Conditional on the common systematic
factor ft, the probability of observing dIt (ft) =

∑
i∈It

dIi,t(ft) defaulting infecting firms
(dIt (ft) = 0, 1, . . . , N I

t ) is given by:

P (dIt (ft)|ft) =
(

N I
t

dIt (ft)

)
· πI(ft)d

I
t (ft) ·

(
1− πI(ft)

)(NI
t −dI

t (ft))
, (10)

where:

πI(ft) = Φ
(
c−√ρ · ft√

1− ρ

)
(11)

is the homogenous conditional default probability of an infecting borrower.
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Conditional on the common risk factor and the default frequency of the infectors, we
obtain the probability of observing dCt =

∑
j∈Ct

dCj,t(ft) defaulting contaminated firms
(dCt (ft) = 0, 1, . . . , NC

t ) as:

P (dCt (ft)|ft, dIt (ft)) =
(

NC
t

dCt (ft)

)
· πC(ft, dIt (ft))

dC
t (ft) ·

(
1− πC(ft, dIt (ft))

)(NC
t −dC

t (ft))
, (12)

where πC(ft, dIt (ft)) is the homogenous conditional default probability of the infected firms
from equation (9).

Due to the rule of conditional probability where the joint probability of two events A and B
is given by P (A ∩ B) = P (A|B) · P (B), the joint probability of observing dIt (ft) defaulting
infectors and dCt (ft) defaulting infected firms is:

P (dIt (ft), d
C
t (ft)|ft) = P (dIt (ft)|ft) · P (dCt (ft)|ft, dIt (ft)). (13)

Finally, if we observe these default patterns for a whole time series of independent years, the
log-likelihood function is:

l(c, ρ, β) =
T∑
t=1

ln
{∫ ∞
−∞

P (dIt (ft), d
C
t (ft)|ft) ϕ(ft) dft

}
. (14)

For a given time series of default data this function is optimized with respect to the parameters
c, ρ, and β.

3.4 Model Extensions

The contagion model as presented in section 3.2 takes into account just one segment consist-
ing of infecting and infected firms. All infecting firms are assumed to influence the default
processes of all infected firms. This universal dependency structure does not seem adequate
in reality, where the bankruptcy of a firm in one business sector is not likely to directly affect
the default probabilities of firms in other business sectors. Therefore, it seems adequate to
assume contagion channels within defined sectors only. However, the default processes of all
firms are driven by the same systematic risk factor Ft. Moreover, the assumption of homoge-
neous default probabilities of all firms within a business sector is an unnecessary restriction
that we will drop.

For example, we may think of the standard credit factor model segmenting by rating grade,
and credit contagion within a business sector. We may therefore separate firms within a
homogeneous rating grade into different sectors and divide each sector into those firms which
infect other firms and those which are affected by contagion. Figure 1 illustrates the contagion
channels within a business sector.

6



Segment A

(e.g. Rating Grade A)
Segment B

(e.g. Rating Grade B)

Infecting Firms
(autonomouos)

Infecting Firms
(autonomouos)

Infected
Firms

Infected
Firms

Contagion Channel
Business Sector Z

Figure 1: Contagion channels

3.5 Simulation Study

Before we present the empirical results of our estimation model we will demonstrate the
robustness of the estimation procedure in a simulation study. Consider a synthetic portfo-
lio consisting of 8,000 firms which can be mapped unambiguously to one of three sectors
(X, Y , Z) as well as to one of two rating grades (A, B). 1,000 firms belong to the sector X,
2,000 to the sector Y , and 5,000 to the sector Z. In a first step, it is assumed that within
each sector θ = 20% of the firms may infect the remaining 80%, no matter whether or not the
firms belong to the same rating grade. Within each sector/contagion-group combination 50%
of the firms belong to segment A (rating grade A) and 50% to segment B (rating grade B).
Each segment is assumed to be homogeneous in terms of default probabilities and correlations.
Table 1 illustrates the number of firms in the respective segments.

rating grade A rating grade B sum

sector X
infecting firms 100 100 200
infected firms 400 400 800

sector Y
infecting firms 200 200 400
infected firms 800 800 1,600

sector Z
infecting firms 500 500 1,000
infected firms 2,000 2,000 4,000

sum 4,000 4,000 8,000

Table 1: Number of firms in respective segments (simulation study)
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We now conduct a simulation study consisting of the following steps:

1. Generate a time series of simulated defaults in the portfolio according to the stochastic
model described in section 3.4. The length of the simulated time series equals 20 years
which is also the length of the time series used for the empirical analysis.

2. Estimate the parameters cA, cB, ρA, ρB, and β from the simulated default data using a
maximum-likelihood function.

3. Repeat steps 1 to 2 10,000 times.

The assumed probabilities of default, the asset correlations as well as the contagion factor β
can be taken from table 2. The parameter values are chosen arbitrarily, different values lead
to qualitatively similar results.

rating grade A rating grade B
default threshold c −1.64485 −1.28155
corresponding autonomous default probability π 0.05 0.10
asset correlation ρ 0.20 0.10
contagion factor β 2.00
proportion of infecting firms θ 0.20

Table 2: True Parameters in synthetic portfolio (simulation study)

Table 3 summarizes characteristics of the parameter estimates. While the (autonomous)
probabilities of default are estimated accurately, the asset correlations show a small downward
bias. These results are in line with the findings of Gordy/Heitfield (2000).

mean std.dev.
autonomous default probability π̂A = Φ(ĉA) 0.0500302 0.0115710
autonomous default probability π̂B = Φ(ĉB) 0.0999514 0.0130323
asset correlation ρ̂A 0.1894615 0.0488790
asset correlation ρ̂B 0.0950753 0.0281452
contagion factor β̂ 2.0124706 0.1165849

Table 3: Parameter estimates (simulation study 1)

The estimation of the contagion factor β is of particular interest. As can be taken from
table 3, the average estimated contagion factor ( ¯̂

β = 2.01) virtually equals the true value
of 2.00. Figure 2 shows a histogram of the parameter estimates β̂. No abnormalities are
visible.

Analogous results are obtained using different parameter combinations for the default prob-
abilities, asset correlations, and the contagion factor. The PDs and the contagion parameter
are always estimated accurately, the asset correlations show a small downward bias. All in
all, the parameter estimation seems to work quite well.

In the next step, the parameter estimates are analyzed when no contagion effect is assumed
in the generation of the time series of simulated defaults (β = 0). Except for β the parameter
values of table 2 still hold. The resulting parameter estimates are presented in table 4.
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Figure 2: Histogram of parameter estimates β̂

mean std.dev.
autonomous default probability π̂A = Φ(ĉA) 0.0499327 0.0116084
autonomous default probability π̂B = Φ(ĉB) 0.0998806 0.0128940
asset correlation ρ̂A 0.1891532 0.0500241
asset correlation ρ̂B 0.0948750 0.0281223
contagion factor β̂ 0.0032047 0.1085583

Table 4: Parameter estimates (simulation study 2)

The contagion factor continues to be estimated accurately ( ¯̂
β = 0.003). This indicates that

the likelihood function is suitable for both portfolios with and without contagion effects. If
the analyzed time series of defaults does not contain contagion effects the estimated contagion
factor is near zero. This implies that statistically significant contagion factors estimated from
empirical data indeed indicate contagion effects.

In a last step of our simulation study, we analyze the parameter estimates if contagion effects
are considered when generating the time series of defaults but only the parameters of the
standard factor model of equation (5), i.e. without the contagion parameter, are estimated.
Again, the parameters of table 2 are used. Table 5 describes the resulting parameter estimates.

It is apparent that all estimated parameters exceed their true values. This is firstly due to the
fact that both ρ and β are parameters describing the dependency structure of the model. High
values for the asset correlation as well as for the contagion factor increase the probability of
joint default events and thus the tail weight is overestimated. Since the contagion channels are
independent from the rating categories, this holds both for ρA and ρB. Secondly, by credit
contagion the default probabilities of the infected firms exceed their autonomous default
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mean std.dev.
autonomous default probability π̂A = Φ(ĉA) 0.0716119 0.0192589
autonomous default probability π̂B = Φ(ĉB) 0.1298055 0.0212883
asset correlation ρ̂A 0.2453088 0.0661608
asset correlation ρ̂B 0.1452702 0.0497609

Table 5: Parameter estimates (simulation study 3)

probabilities. If the contagion parameter is neglected in the estimation process the default
probabilities have to be increased to ensure the correct expected loss. Again, due to the
independence of the contagion channels from the rating categories both πA and πB are affected.

We now generate loss distributions from the true parameters (see table 2) as well as from
the parameter estimates including and excluding the contagion factor (see tables 3 and 5),
respectively. All exposures were set to one in order to focus on the contagion effect only.
Table 6 contains the average default rates as well as the popular risk measures Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR) for the different models. The risk measures are
defined as follows:

Definition 1 (Value-at-Risk) VaRα(X) = inf {x ∈ <|P (X ≤ x) ≥ α}.

Definition 2 (Conditional Value-at-Risk) CVaRα(X) = E {X|X ≥ VaRα(X)}.

model mean std.dev. VaR0.999 CVaR0.999

true model 811.27 713.39 5,074.00 5,562.30
estimated model (including β̂) 809.42 691.69 4,926.00 5,415.66
estimated model (excluding β̂) 805.68 640.08 4,212.00 4,635.97

Table 6: Descriptive statistics of loss distributions

As can be taken from table 6 the true model and the estimated model including β̂ result in
approximately the same loss distributions. However, if the contagion parameter is neglected
like in the standard factor model, the increased parameter estimates for the default prob-
abilities nearly ensure the correct mean loss but the weight in the tail as measured by the
VaR or the CVaR is considerably underestimated. The increased asset correlations do not
adequately assess the tail risk. This is also illustrated by the histograms of the estimated loss
distributions in figure 3.

4 Empirical Analysis

4.1 Empirical Data

For the empirical analysis, we use yearly bond default data for the years 1983 to 2003 published
by Moody’s Default Risk Service. In 1983, Moody’s changed its rating methods resulting in
a break in the time series. Therefore, no data before 1983 is used. The dataset contains
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Figure 3: Loss distributions of estimated models

information regarding the respective face amounts of the exposures, the firms’ countries of
legal incorporation, the rating grades assigned by Moody’s, and information on whether or
not the bonds defaulted. Only bonds issued by US firms are used for our analysis. Altogether,
we obtain a database with 30,643 firm-years including 820 defaults over the abovementioned
time horizon.

All firms are mapped into two sub-portfolios named ”investment grade” (rating grades Aaa to
Baa) and ”speculative” (rating grades Ba to C), respectively. The average default rate equals
2.68 percent, 0.16 percent, and 5.47 percent in the total portfolio, the investment grade
portfolio, and the speculative portfolio, respectively. The time-dependency of the default
rates can be seen in figure 4.

All firms are assigned to one of eleven Moody’s broad industries. The size of the industries
in the database differs considerably, with the largest (industrial) containing 20,448 firm-years
and the smallest (sovereign) containing just 134 firm-years. For the following analyses, the
industries banking, finance, insurance, real estate finance, securities, and thrifts are combined
in the sector banking/insurance. The industries other non-bank, public utility, sovereign, and
transportation constitute the sector other. The most numerous industry, ”industrial”, builds
the third sector. The number of firms in the respective sectors can be taken from table 7.

sectors absolute frequency relative frequency
banking/insurance 6,308 20.59%
industrial 20,448 66.73%
other 3,887 12.68%

Table 7: Number of firms in respective sectors (empirical data)
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4.2 Empirical Estimation Results

We now turn to the analysis of the empirical data. First of all, some assumptions regarding
the contagion channels have to be made. As already pointed out, we assume that credit
contagion occurs within business sectors. The three sectors banking/insurance, industrial
and other presented in section 4.1 serve this purpose. In a first step, we assume that within
each sector the 20% biggest firms (measured by exposure size) may infect the remaining 80%,
no matter whether or not the firms belong to the same rating grade. The intuition behind this
assumption is that the default of a large bond may set signals for the entire sector. The ratio
20/80 is chosen rather arbitrarily and follows Pareto’s principle stating that in many areas
20 percent of something are responsible for 80 percent of the results. Although the dataset
contains the exact rating grades of all firms, the firms have to be mapped into one of two
rating categories (investment grade and speculative) to ensure a sufficiently high number of
defaults per rating category for a robust parameter estimation. Table 8 illustrates the number
of firms in the respective segments.

Apparently, the number of infecting firms in the segment investment grade is overproportion-
ally high. This is plausible and can be traced back to the correlation of the rating categories
and the firm sizes that determine whether a firm belongs to the infecting or the infecting firms
in our model. In average, bigger firms show lower probabilities of default than smaller firms.

The resulting parameter estimates for the two segments investment grade and speculative
can be taken from table 9. All parameter estimates are significant at the 5% level with the
exception of the asset correlation in the investment grade portfolio. This is due to the low
number of observed defaults in this subportfolio resulting in a high standard error. The
most interesting parameter is the contagion factor β, which equals β̂ = 3.5532 and is highly
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investment grade speculative total
banking/ infecting firms 1,128 123 1,251
finance infected firms 4,063 994 5,057

industrial
infecting firms 2,402 1,679 4,081
infected firms 5,469 10,898 16,367

other
infecting firms 630 140 770
infected firms 2,411 706 3,117

total 16,103 14,540 30,643

Table 8: Number of firms in respective segments (empirical data)

estimate std.err. p-value
autonomous default probability (investment grade) π̂inv 0.001171 0.000478 0.0235
autonomous default probability (speculative) π̂spec 0.04422 0.005140 < 0.0001
asset correlation (investment grade) ρ̂inv 0.1342 0.08593 0.1341
asset correlation (speculative) ρ̂spec 0.03972 0.01486 0.0090
contagion factor β̂ 3.5532 1.2989 0.0127

Table 9: Parameter estimates (empirical data, θ = 20%)

significant. Obviously, contagion effects indeed play a role in empirical credit portfolios and
therefore should not be ignored when assessing credit risk. Mapping firms to infecting and
infected firms by exposure size is a simplifying assumption. In reality, banks will have better
means, allowing for alternative allocations of the firms. Moreover, setting the proportion
of infecting firms θ to 20% needs justification. Here, it was chosen arbitrarily to permit the
parameter estimation. However, if the infection parameter proves to be statistically significant
in this very simple set-up this result should also hold for more sophisticated mappings.

The tables 10 to 12 show the parameter estimates for varying values of the assumed proportion
of infecting firms in the empirical dataset (θ = 10%, θ = 15%, θ = 25%). They illustrate
that the statistical significance of the infection parameter was not incidental in table 9. All
parameters (again except for the asset correlation in the investment grade segment) continue
to be significant at the 5% level.

Concluding, table 13 shows the parameter estimates for the empirical data in the standard
factor model in which no contagion parameter is considered. Analogously to the simulation
study of section 3.5 the estimates of all remaining parameters increase.

Figure 5 illustrates the loss distributions in 2003, the last year of the empirical dataset, for the
models including and excluding the contagion parameter, respectively. Again, all exposures
were set to one in order to focus on the contagion effect only. The proportion of infecting
firms was again assumed to be θ = 20%. In total, 2,189 firms are included in the dataset in
2003.

It is apparent that the model including the contagion parameter results in a fatter tail of
the loss distribution. The portfolio risk is arguably underestimated if contagion effects are
neglected. This information can also be taken from table 14 containing descriptive statistics
of the two loss distributions.
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estimate std.err. p-value
autonomous default probability (investment grade) π̂inv 0.001220 0.000425 0.0095
autonomous default probability (speculative) π̂spec 0.04575 0.005378 < 0.0001
asset correlation (investment grade) ρ̂inv 0.09831 0.07055 0.1788
asset correlation (speculative) ρ̂spec 0.04208 0.01542 0.0123
contagion factor β̂ 3.3825 1.6215 0.0500

Table 10: Parameter estimates (empirical data, θ = 10%)

estimate std.err. p-value
autonomous default probability (investment grade) π̂inv 0.001180 0.000424 0.0116
autonomous default probability (speculative) π̂spec 0.04454 0.005310 < 0.0001
asset correlation (investment grade) ρ̂inv 0.1041 0.07079 0.1572
asset correlation (speculative) ρ̂spec 0.04207 0.01529 0.0123
contagion factor β̂ 3.7552 1.4940 0.0206

Table 11: Parameter estimates (empirical data, θ = 15%)

estimate std.err. p-value
autonomous default probability (investment grade) π̂inv 0.001174 0.000483 0.0246
autonomous default probability (speculative) π̂spec 0.04468 0.005025 < 0.0001
asset correlation (investment grade) ρ̂inv 0.1371 0.08535 0.1240
asset correlation (speculative) ρ̂spec 0.03829 0.01458 0.0162
contagion factor β̂ 3.2986 1.1912 0.0118

Table 12: Parameter estimates (empirical data, θ = 25%)

4.3 Sensitivity Analysis

To conclude, we conduct sensitivity analyses of our portfolio with respect to the contagion
factor β. First of all, we generate the loss distribution of the empirical portfolio for the year
2003 using the maximum-likelihood estimates shown in table 9. All exposures were set to one
in order to focus on the effect of the varying contagion parameter on the loss distributions
only. Ceteris paribus, we then generate loss distributions using different parameter values for
the contagion factor. The values are not chosen arbitrarily but are set to the upper limits
of the confidence interval of the point estimate β̂ at a confidence level of 95% and 99.9%,
respectively. These limits equal β̂0.95 = 6.2626 and β̂0.999 = 8.5532, respectively. Figure 6

estimate std.err. p-value
autonomous default probability (investment grade) π̂inv 0.001367 0.000535 0.0189
autonomous default probability (speculative) π̂spec 0.05086 0.005838 < 0.0001
asset correlation (investment grade) ρ̂inv 0.1323 0.07532 0.0944
asset correlation (speculative) ρ̂spec 0.05291 0.01784 0.0076

Table 13: Parameter estimates, not considering the contagion effect (empirical data)
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Figure 5: Estimated loss distributions 2003 (empirical data, θ = 20%)

model mean std.dev. VaR0.999 CVaR0.999

estimated model including contagion factor 48.83 26.42 206.00 245.83
estimated model excluding contagion factor 50.34 27.08 194.00 218.67

Table 14: Descriptive statistics of loss distributions (empirical data)

shows the three resulting loss distributions. By shifting the contagion factor, the mean, the
variance, and the weights in the tails increase.

The corresponding descriptive statistics of the loss distributions as well as the risk measures
Value-at-Risk and Conditional Value-at-Risk can be taken from table 15. Since increasing
the contagion factor also increases the expected loss, both the absolute and the relative risk
measures are given. The latter are defined as follows:

Definition 3 (Value-at-Riskrel.) VaRrel.
α (X) = inf {x ∈ <|P (X ≤ x) ≥ α} − E(X).

Definition 4 (Conditional Value-at-Riskrel.) CVaRrel.
α (X) = E {X|X ≥ VaRα(X)} − E(X).

The effect of the increased contagion factor on the quantil-based risk measures is enormous.
While the expected loss increases by only 16.36% using β̂0.999 = 8.5532 instead of the point
estimate β̂ = 3.5532 the relative CVaR0.999 increases by 62.95%.

It should be noted that only the loss distribution of the infected firms is affected by the
factor shift, the loss distribution of the infecting firms remains completely unaffected. For a
portfolio consisting of infected firms only the consequences of the factor shift are accordingly
more severe. Tables 16 to 18 compare the relative increase of the risk measures for a portfolio
consisting of all the infecting firms only (table 16), a portfolio consisting of all the infected
firms only (table 17), and the total portfolio (table 18).
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Figure 6: Loss distributions (sensitivity analysis)

β̂ = 3.5532 β̂0.95 = 6.2626 β̂0.999 = 8.5532
mean 48.83 52.96 56.82
std.dev. 26.42 31.13 35.74
VaR0.999 206.00 251.00 302.00
CVaR0.999 245.83 307.23 377.82
VaRrel.

0.999 157.17 198.04 245.18
CVaRrel.

0.999 197.00 254.27 321.00

Table 15: Descriptive statistics and risk measures of loss distributions (sensitivity analysis)

As expected, the loss of the portfolio consisting of infecting firms is independent from the
contagion factor, only random deviations can be observed. The (relatively) greater influence
of the contagion factor on the portfolio loss of the infected firms as compared to the total
portfolio is apparent.

Instead of conducting sensitivity analyses with respect to the contagion factor β one could
also stress the default rate of the infecting firms DRIt = DI

t /N
I
t . Since the contagion factor β

and the default rate of the infecting firms appear in the model equations in a multiplicative
way (see equation 9) the effect of stressing either factor is identical. Stressing the default
rate of the infecting firms is similar to the approach by Neu/Kühn (2004) who propose to
stress-test their model by setting specific firms into the default state.
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β̂ = 3.5532 β̂0.999 = 8.5532 percentage change
mean 4.89 4.90 +0.04%
std.dev. 3.31 3.32 +0.27%
VaR0.999 23.00 23.00 +0.00%
CVaR0.999 28.28 27.81 −1.67%
VaRrel.

0.999 18.11 18.10 −0.01%
CVaRrel.

0.999 23.39 22.92 −2.02%

Table 16: Percentage increase of risk measures in the portfolio of infecting firms (sensitivity
analysis)

β̂ = 3.5532 β̂0.999 = 8.5532 percentage change
mean 43.93 51.92 +18.18%
std.dev. 23.73 32.88 +38.56%
VaR0.999 184.00 279.00 +51.63%
CVaR0.999 219.35 350.85 +59.95%
VaRrel.

0.999 140.07 227.08 +62.12%
CVaRrel.

0.999 175.42 298.93 +70.41%

Table 17: Percentage increase of risk measures in the portfolio of infected firms (sensitivity
analysis)

β̂ = 3.5532 β̂0.999 = 8.5532 percentage change
mean 48.83 56.82 +16.36%
std.dev. 26.42 35.74 +35.30%
VaR0.999 206.00 302.00 +46.60%
CVaR0.999 245.83 377.82 +53.69%
VaRrel.

0.999 157.17 245.18 +56.00%
CVaRrel.

0.999 197.00 321.00 +62.95%

Table 18: Percentage increase of risk measures in the total portfolio (sensitivity analysis)

5 Conclusion

In this paper, we have extended the standard factor model to allow for credit contagion.
Contagion is assumed to occur within business sectors. Every sector consists of infecting and
contaminated firms. We assume a one-way dependency structure with the probabilities of
default of the contaminated firms depending on the default rate of the infecting firms in the
respective industry sector.

Our key findings can be summarized as follows: We have shown in a simulation study that con-
tagion factors can be estimated accurately from historical data using a maximum-likelihood
approach. Parameter estimation from empirical default data has revealed the existence of
significant contagion effects in real-world portfolios. Concluding, we have conducted sensitiv-
ity analyses for the empirical portfolio with respect to the contagion factor, demonstrating
the dramatic impact of a shift of the contagion factor on various risk measures. Our find-
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ings are not only relevant for financial institutions but also for regulatory purposes. To not
underestimate credit risk, contagion effects should be accounted for in credit portfolio models.

A possible extension of our model is the inclusion of sector and/or rating grade specific
systematic factors. At the moment, the available historical time series of empirical default
data are too scarce to estimate the necessary additional parameters. However, if more data
becomes available the estimation of the additional parameters can be easily implemented.
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