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Stress Testing CDOs

Abstract

Analyses regarding the responsibility of risk management for the
current credit crises have found a lack of stress tests as one important
issue. In this article, we argue that stress tests are even more im-
portant a risk management tool with structured finance products like
CDOs. We explain why the specific risk profile of such assets requires a
dynamic modeling. In an extensive case study a stress test comparison
is made between portfolios including convential bonds and structured
products. The results clearly show the increased risk contribution of
structured products which reveals explicitly only in a dynamic view.
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1 Introduction

The sustained financial crises has triggered investigations on potential weak-
nesses of risk management practices having contributed to what happened
(SSG 2008). In this field, a lack of stress testing is a frequently identified
issue and so it is a hot topic on the Basel II agenda now.

This lack does not only apply to practice but also to research. While the
general literature on stress testing is quite extensive (e.g. Berkowitz 2000,
Kupiec 1998, Roesch & Scheule 2007, Simons & Rolwes 2008) there are
hardly any contributions in terms of credit derivatives (Dewyspelaere et al.
2004).

Why should a lack of stress tests have such tremendous impact just now?
Going back in history we find a series of “financial crises” and bursting bub-
bles but no one was as severe and threatening as the current one. Were
risk methods deteriorating? We think “partly”. In our opinion one ma-
jor factor at the root of the crisis is the explosive growth of stress-sensitive
financial products which did not come along with enhanced stress testing
procedures. It is well known that structured products are more sensitive to
changes in systematic risk. As a result, they are more sensitive to stress
tests and so stressing systematic risk factors has considerable impact with
them. Hence, our major objective in this article is to show that stress
tests are more relevant with structured products than with bonds and to
identify the major drivers of risk. Furthermore, we suggest a dynamic mod-
eling approach for two reasons. First, systematic factors are known to have
dynamic persistence, i.e., there are phases of better and phases of worse
economic conditions. Thus, increased systematic dependence requires accu-
rate modeling of the systematic factor. Second, the common approach of
single-period “through-the-cycle” modeling averages out important extreme
scenarios. As transition from low to high risk is rather abrupt than gradual
with structured products multiple-periods “point-in-time” modeling of the
systematic factor is important in order to discover adverse scenarios.

While the literature on stress testing is comparatively large, hardly any
of them are on CDOs or on portfolios including CDOs. Fender et al. (2008)
present a very limited stress analysis of the risk contributions of CDOs.
Similarly, the article of Dewyspelaere et al. (2004) is limited in the set of
considered risk parameters, includes no dynamic view and finally provides no
model details. In the present article, we go a step further and present a fully
dynamic risk analysis of CDOs and their risk contributions to a portfolio
under stress. Most importantly, increased dynamic risk and stress-sensitivity
are found with CDOs. We identify the most stress-sensitive drivers of CDO
risk and analyze their behavior in time. Our analyses substantiate clearly the
increased stress-sensitivity of CDOs and the necessity of dynamic modeling
in this context.

In the next section we outline the model setup and describe relevant risk
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measures. After that, we introduce CDOs and specify a sample asset pool.
The following section includes the results of the stress test study.

2 Model Setup

In this section we describe the model setup upon which our analyses are
based. We consider a Merton-style Gaussian one-factor model as suggested
in the Basel II specification. F represents a common systematic factor which
affects all obligors’ default probabilities.

2.1 Single Period Gaussian 1-Factor Model

In a portfolio of i = 1, . . . , n obligors default of i is modeled as a threshold
event:

Di = 1{Ri<ci} (1)

where Ri is a random variable comprising two terms

Ri =
√

ρF +
√

1− ρUi (2)

a common (systematic) factor F and an idiosyncratic factor Ui. Both are
iid standard normal and so is Ri. Di is a default indicator which jumps to
unity if Ri falls below ci. As a result, the probability of default (PD) of
obligor i is P[Di = 1] = λi = Φ(ci), where Φ denotes the standard Gaussian
cumulative distribution function.

Conditioning on F , the specific structure of Ri with a common and an id-
iosyncratic factor implies independence of any two Ri, Ri′ , i, i′ ∈ {1, . . . , n}, i 6=
i′. The conditional probability of default of obligor i is

λi(F ) = Φ
(

Φ−1(λi)−√ρF√
1− ρ

)
(3)

Now let Ni denote the notional of obligor i. Then, portfolio loss is given
by

L =
1
N

∑

i

1{Di=1} ·Ni · LGDi (4)

where N =
∑

i Ni denotes total exposure.
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2.2 Multiple Periods Gaussian 1-Factor Model

So far the described approach is standard and frequently applied in practice.
Our next step is to extend the model to multiple periods. This is most easily
done assuming stochastic processes for F and Ui, i.e., Ft and Uit. In the
absence of any other hypothesis we simply assume that Uit is iid standard
normal.

However, the systematic term admits more structure. Empirical research
shows that default rates have a cyclical behavior and persistence phases.
Hence, we specify Ft in one of the most simple ways as first-order autore-
gressive process AR(1)1:

Ft = αFt−1 + σWt (5)

where α and σ are parameters, F0 is an initial value of the process and Wt

is iid standard normal. Furthermore, we set σ =
√

1− α2 so that Ft →
N (0, 1) as t grows. The first two moments of the unconditional process
Ft are E[Ft] = 0 and V[Ft] = 1. Given F0 we have E[Ft] = αtF0 and
V[Ft] = σ2

∑t−1
j=0 α2j = 1− α2t.

A multi-period setting requires evaluation of the threshold model once
per period among the survivors. The default indicators are defined accord-
ingly as follows

Dit =

{
1 if Rit < cit

0 else
(6)

In each period, i ∈ Nt, i.e., only names that have not defaulted yet are
kept in the asset pool. The set of survivors of period t − 1 is defined as
Nt = {i : Dit′ = 0, t′ < t}.

Now, substituting Ft in Rit we obtain

Rit =
√

ραtF0 +
√

ρσ
t−1∑

j=0

αjWt−j +
√

1− ρUit (7)

which clearly shows the exponentially decreasing weight of systematic risk
disturbances of earlier periods.

The default thresholds cit have to be adapted to the hazard rate term
structures (λit). Thus, for any t > 1 we set

P
[
Rit < cit | Rit′ > cit′ , t

′ < t
]

= λit (8)

1This type of process has also been used by Lamb et al. (2008) and McNeil & Wendin
(2006).
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and solve for cit. For t = 1 the condition drops.
The marginal and joint distributions of Rit and Rit′ , t

′ < t, are Gaussian
with expectation

(E[Ri1], . . . ,E[Rit]) = (0, . . . , 0) (9)

and covariances

Cov (Rit, Rit′) = E[Rit ·Rit′ ]− E[Rit]E[Rit′ ]

= ρα|t−t′| + (1− ρ)1{t=t′}
(10)

The derivation of the covariance matrix can be found in the appendix. The
above hazard rates based on a multidimensional Gaussian are easily calcu-
lated either via simulation of the model or numerical integration of (8). As
a result, we may derive cit consecutively (given cit′ , t

′ < t) in a bootstrap
fashion2.

Furthermore, we need loss given default, LGDit, the percentage loss in
default period t. We use a similar specification as Duellmann & Trapp (2004)
who assume the following process for Yit = ln

[
1−LGDit
LGDit

]

Yit = µ + σ̃
√

ω1Ft + σ̃
√

1− ω1Eit (11)

where i ∈ Dt, the index set of defaulted names by the end of t, Dt = {i ∈
Nt : Dit = 1} and Eit is a name-specific standard normally distributed
innovation.

µ and σ̃ are linear transformation coefficients and ω1 controls the in-
fluence of Ft. The first two moments are E[Yit] = µ and V[Yit] = σ̃ with-
out knowledge of F0 and E[Yit | F0] = µ + σ̃

√
ω1α

tF0 and V[Yit | F0] =
σ̃2

(
1− ω1α

2t
)

given F0. The latter conditional moments tend to the uncon-
ditional ones as t rises.

Thus, LGD and PD are based on the same process Ft. Ultimately,
portfolio loss in period t is given by

Lt =
1
N

∑

t′≤t

∑

i∈Dt′

Ni · LGDit′ (12)

where we assume that notionals Ni are time-invariant.

3 CDO Structure and Risk Measures

In this paper we analyze the risk behavior of CDOs under stress. To that
end, we have to define a CDO as well as measures to exhibit and quantify

2Inversion is done easily via a one-dimensional root search algorithm.
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its risk properties.

3.1 CDOs

A CDO is a securitized pool of defaultable assets where the issued notes
relate to different loss layers (“tranches”) of the total notional. A specific
tranche incurs losses only in excess of a minimum loss level A(tr) and also
only up to a maximum loss level B(tr). As a result, tranches differ in terms
of seniority. An example of a possible tranche structure is given in Table 1.

Tranche A(tr) B(tr)

Super Senior 0.17 1.00
Senior 0.11 0.17

Mezzanine 0.08 0.11
Junior 0.05 0.08
Equity 0.00 0.05

Table 1: CDO tranches.

To formalize a tranche, let 0 ≤ A(tr) < B(tr) ≤ 1 denote a percentage
interval of the asset pool notional N =

∑
i Ni. A specific note of this tranche

incurs losses if total cumulative asset pool loss exceeds the lower attachment
point A(tr) of the tranche, i.e., Lt > A(tr) and a complete default of the CDO
occurs if Lt ≥ B(tr). Between these extremes CDO tranche loss is given by

L
(tr)
t =

[
min

(
Lt, B

(tr)
)
−min

(
Lt, A

(tr)
)]

/
[
B(tr) −A(tr)

]
(13)

3.2 Sample Asset Pool and CDO

A sample asset pool which will be the foundation of our later analyses is
given in Table 2. It is adopted from Bluhm & Overbeck (2007, Appendix
6.9).

Class # t = 1 t = 2 t = 3 t = 4 t = 5

AAA 5 0.0000 0.0000 0.0004 0.0003 0.0005
AA 12 0.0001 0.0002 0.0005 0.0008 0.0010

A 22 0.0004 0.0009 0.0013 0.0017 0.0023
BBB 32 0.0029 0.0057 0.0063 0.0090 0.0090

BB 17 0.0128 0.0271 0.0350 0.0344 0.0318
B 8 0.0624 0.0863 0.0845 0.0752 0.0607

CCC 4 0.3235 0.1478 0.1095 0.0972 0.1260

Table 2: Asset pool described in Bluhm & Overbeck (2007): rating class,
number of names, hazard rates for t = 1, . . . , 5.

The pool comprises 100 credit risky names from 7 rating classes with
different hazard rate term structures. Maturity is T = 5 years and portfolio
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exposures are homogeneous. A CDO with strict loss prioritization (SLP)
rule references the pool3.

Below, our focus is on a mezzanine tranche with attachment point A(tr) =
0.08. To study the relevance of tranche width, we look at two alternative
detachment points B(tr) = 0.11 and B(tr) = 0.09. Thus, the first tranche
variant has width 3% and the second has 1%.

3.3 Asset pool model

To model the asset pool we employ the dynamic single risk-factor model
specified in the previous chapter. Hence, the asset values which are com-
pared with threshold cit are given by

Rit =
√

ρ(AP)F
(AP)
t +

√
1− ρ(AP)Uit (14)

and the systematic factor driving the asset pool (AP) has first-order autore-
gressive dynamics

F
(AP)
t = αF

(AP)
t−1 + σWt (15)

Finally, LGDit is given by

LGDit =
1

1 + exp
(
µ(AP) + σ̃

√
ω1F

(AP)
t + σ̃

√
1− ω1Eit

) (16)

We add a superscript (AP) to indicate that these parameters belong to
the asset pool model. In the next section we introduce a second portfolio so
that differentiation will be helpful at this place.

3.4 CDO Risk Measures

In order to qualify and quantify the risk behavior of CDO tranches we employ
several measures.

Hitting Probability Hitting probability is simply the probability that
total asset pool loss exceeds the attachment point, i.e., P

[
Lt > A(tr)

]
. This

measure indicates the cumulative risk of tranche losses over t periods.

Tranche Hazard Rate The tranche hazard rate is defined as the proba-
bility of loss in t given no loss until t− 1:

λ
(tr)
t =

P
[
Lt > A(tr), Lt−1 ≤ A(tr)

]

P
[
Lt−1 ≤ A(tr)

] (17)

3SLP means that tranches are paid in strict order of their seniority.
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This measure reveals hitting risks in period t.

Expected LGD Expected loss given default of a tranche, E
[
L

(tr)
t | L(tr)

t > 0
]
,

is a measure of the level of cumulated losses incurred by period t.

Incremental Value at Risk The final risk measure is incremental value
at risk of a tranche in period t. It is defined as the difference between
the VaR of a “superportfolio” including the tranche and the VaR of the
same “superportfolio” without the tranche (e.g. Felsenheimer et al. 2006).
Formally,

∆VaRt(q) = F−1

L
(SP)+

t

(q)− F−1

L
(SP)
t

(q) (18)

where F−1
Lt

denotes the (generalized) inverse of Lt at fractional rank q and

L
(SP)+

t and L
(SP)
t denote loss of the superportfolio with and without the

CDO tranche, respectively. Note that ∆VaRt(q) is generally not portfolio-
invariant. As shown by Gordy (2003), in the case of a perfectly diversified
portfolio and a single systematic risk factor, VaRt(q) and thus ∆VaRt(q)
are portfolio-invariant, but we do not rely on this result here.

For the superportfolio we assume N = 500 names with identical PDs.
The PD term structure is a weighted average of the asset pool PD term
structure. The asset values are again modeled as

Rit =
√

ρ(SP)F
(SP)
t +

√
1− ρ(SP)Uit (19)

but now carry superscript (SP) to distinguish them from asset pool pa-
rameters or variables. Portfolio constituents have their own systematic risk
factor

F
(SP)
t = αF

(SP)
t−1 + σW

(SP)
t

(20)

which is, however, correlated with F
(AP)
t via the disturbances:

Corr
(
W

(SP)
t ,W

(AP)
t

)
= ω2

Finally, LGDit is given by

LGDit =
1

1 + exp
(
µ(SP) + σ̃

√
ω1F

(SP)
t + σ̃

√
1− ω1Eit

) (21)

All names have unit exposure4.
4For ∆VaR calculation we fixed the ratio of notionals of superportfolio and CDO
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4 Stress Test Study

In this section we perform stress tests on our mezzanine tranches and study
the evolution of their risk measures. We compare them with those of a
bond under the same stress scenarios. To guarantee a proper comparison
we match tranche and bond rating based on the cumulative 5-year tranche
PD. That is, the 5-year tranche hitting probability implies a rating the term
structure of which shall be used for the bond investment. In our case, the
tranches have a hitting probability of 10.51%. This lies between BBB and
BB on an S&P scale. We constructed a comparable bond term structure by
interpolating cumulative PDs between BBB and BB.

As a final remark, the comparable bond’s Rit needs to be driven by the
same PD factor F

(AP)
t as the constituents of the asset pool.

4.1 Stress Scenarios

The stress settings we consider are to reveal adverse risk exposures as a
result of extreme levels of critical model parameters. The following Table 3
shows the cases which we shall study. For the sake of clarity we stress only
parameters relating to the asset pool and the comparable bond while the
superportfolio model remains unchanged.

Case 0 is the base case which serves as a “normal” benchmark. It de-
scribes a neutral scenario with F0 ∼ N (0, 1), low asset correlation ρ = 0.12,
and moderate autocorrelation α = 0.8. The LGD parameters σ̃ and ω1 fol-
low the empirical estimates of Duellmann & Trapp (2004). The correlation
of both PD factor processes, ω2, equals 0.6. F0, ρ, α, as well as the LGD
parameters are identical in the asset pool and the superportfolio.

In a first set of cases we consider univariate stress scenarios. In case 1
we stress the systematic risk factors by fixing F

(AP)
0 at the 0.1 quantile of

the standard Gaussian.
In scenario 2 the correlation parameter ρ(AP) is raised from 0.12 to 0.45.

Scenario 3 lifts the correlation between both PD factor processes from 0.6
to unity. Finally, in scenario 4, a sudden drop in recovery rates is assumed,
so that mean LGD in the asset pool increases from 0.5 to 0.8.

In a second set of scenarios we consider multivariate (simultaneous) stress
cases with increasing severity. Scenario 5 implies again a downturn cycle
with initial value at the 0.1 quantile level of the factor distribution. In order
to generate higher persistence of this adverse “environment” autocorrelation
is increased from 0.8 to 0.95 which implies both higher conditional PDs as
well as higher LGDs. Scenario 6 is equal to scenario 5 but in addition

tranche at 0.95
0.05

.
5As for the plausibility of this increase note that our base case asset correlation is at

the lower bound of empirical estimates found in the literature.
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has ω2, the correlation of the disturbances of the factor processes6 at its
upper bound unity. This scenario pertains to strong systematic dependence
between asset pool and bond portfolio. In scenario 7 we additionally lift
asset correlation in both superportfolio and asset pool from 0.12 to 0.40.
Finally, in scenario 8, scenario 6 is extended for a drop in mean recovery
from 0.5 to 0.2.

Case F
(AP)
0 ρ(AP) α(AP) µ(AP) σ̃(AP) ω

(AP)
1 ω2

0 0 0.12 0.80 0 0.13 0.35 0.6

1 −1.28 0.12 0.80 0 0.13 0.35 0.6
2 0 0.40 0.80 0 0.13 0.35 0.6
3 0 0.12 0.80 0 0.13 0.35 1
4 0 0.12 0.80 −1.36 0.13 0.35 0.6

5 −1.28 0.12 0.95 0 0.13 0.35 0.6
6 −1.28 0.12 0.95 0 0.13 0.35 1
7 −1.28 0.40 0.95 0 0.13 0.35 1
8 −1.28 0.12 0.95 −1.36 0.13 0.35 1

Table 3: Parameter configurations.

4.2 Results

Subsequently, we show the effects of these scenarios on our tranches’ risk
measures. We start our discussion with tranche hazard rates.

t 0 1 2 3 4 5 6 7 8

Mezzanine Tranches

1 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0005 0.0014
2 0.0048 0.0101 0.0059 0.0001 0.0095 0.0030 0.0031 0.0685 0.1113
3 0.0192 0.0540 0.0251 0.0052 0.0600 0.0572 0.0566 0.2378 0.3701
4 0.0339 0.1019 0.0427 0.0223 0.1100 0.1743 0.1783 0.2845 0.4852
5 0.0481 0.1166 0.0490 0.0408 0.1383 0.2357 0.2454 0.2540 0.4748

Bond

1 0.0097 0.0201 0.0033 0.0074 0.0079 0.0216 0.0218 0.0268 0.0219
2 0.0212 0.0364 0.0130 0.0177 0.0185 0.0437 0.0450 0.0589 0.0430
3 0.0269 0.0409 0.0206 0.0237 0.0255 0.0534 0.0525 0.0758 0.0533
4 0.0259 0.0393 0.0241 0.0264 0.0255 0.0524 0.0537 0.0791 0.0522
5 0.0250 0.0330 0.0245 0.0240 0.0235 0.0474 0.0473 0.0745 0.0485

Table 4: Hazard rates.

t 0 1 2 3 4 5 6 7 8

Mezz. Tranches 5 0.1050 0.2571 0.1178 0.0673 0.2861 0.4068 0.4168 0.6212 0.8488
Bond 5 0.1050 0.1587 0.0828 0.0955 0.0970 0.2006 0.2021 0.2786 0.2010

Table 5: 5-year cumulative hitting probabilities.

6Note that these processes are always correlated unconditionally as long as their initial
values coincide.
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Hazard Rates and Hitting Probabilities In Table 4 the reader finds
the hazard rates of tranches and comparable bonds and Table 5 shows
the corresponding 5-year hitting probabilities. Scenarios are arranged in
columns.

The dynamic evolution of both security types is obviously different. A
common pattern across all scenarios (stress and base case) is that tranche
hazard rates are lower than comparable bond rates initially. In a later
period, however, tranche hazard rates increase strongly and exceed those of
the corresponding bond. The reason for this “crossing hazard rates” effect
is subordination melt-off: initially subordination protects the tranche from
losses. Later on, when incurred losses have wiped out this protection layer,
the risk of the tranche soars. The period when hazard rates “take-off”
depends on the tranche’s seniority. For example, the mezzanine tranche is
below the bond in the base case in the first three periods. But in t = 4 it
is suddenly above the bond. By contrast, the hazard rate evolution of the
bond is much smoother. Although not shown here directly, it is obvious
that not only hazard rates but also cumulative PDs of tranches and bonds
do cross in a similar fashion7.

Altogether, the impact of initial value and asset correlation stress entail
the highest hazard rate growth in our stress design. In multivariate stress
scenarios the effects are even stronger. Consequently, the take-off period
of hazard rates decreases as stress increases. As noted above, cumulative
PDs generally exceed those of bonds in final periods of almost all stress
scenarios. For instance, due to our rating-matching 5-year PDs of tranche
and bond are identical. However, in period five of scenario 8 the tranche
hitting probability is more than four times as high as with the bond. Thus,
5-year hitting probabilities of the two tranches increase disproportionately.

To summarize, there are two important observations. First, the crossing
hazard rates phenomenon underlines a different risk dynamics of CDOs and
thus the relevance of dynamic modeling. Second, moving from the base case
to scenario 8 shows the accelerated risk increase of tranches under stress.

Expected LGD Expected LGDs of tranche and bond differ significantly,
as can be seen in Table 6. Bonds have LGDs in the region of 0.5 in all
scenarios except for those where µ is stressed. In the latter case LGD shifts to
about 0.8. By contrast, being cumulative mean LGD of both tranches have
much more variation as they are cumulative. Obviously, mean LGD depends
on the tranche width and, of course, on the amount of subordination. The
larger a tranche, the lower its average LGD. Furthermore, we can see from
scenario 4 and 8 that the LGD of our tranches is hardly influenced by the

7In Table 5 we see that 5-year cumulative PDs of the tranche are usually above those
of the bond. Furthermore, we know that in t = 1 hazard rates and (cumulative) PDs
coincide and in Table 4 we see that tranche rates are below those of the bond initially.
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t 0 1 2 3 4 5 6 7 8

Mezzanine Tranche (Width: 3%)

1 0.0657 0.0765 0.2414 0.1188 0.1943
2 0.3997 0.3432 0.4679 0.1419 0.3286 0.2094 0.1914 0.4268 0.3446
3 0.5020 0.4420 0.5753 0.3215 0.4440 0.3208 0.3146 0.5864 0.5492
4 0.5339 0.5263 0.6440 0.4165 0.5526 0.4505 0.4470 0.7078 0.7113
5 0.5621 0.5890 0.6847 0.4788 0.6313 0.5649 0.5584 0.7747 0.8173

Mezzanine Tranche (Width: 1%)

1 0.1972 0.2296 0.5215 0.3564 0.5102
2 0.7181 0.6597 0.7530 0.4258 0.6284 0.5186 0.4831 0.7235 0.6502
3 0.7875 0.7447 0.8188 0.6149 0.7191 0.6385 0.6461 0.8315 0.8061
4 0.8006 0.7995 0.8515 0.7287 0.7984 0.7575 0.7538 0.8925 0.8923
5 0.8115 0.8332 0.8725 0.7669 0.8510 0.8293 0.8258 0.9220 0.9396

Bond (5-year cumulative PD: 10.51%)

1 0.5318 0.5427 0.5379 0.5112 0.8030 0.5400 0.5428 0.5449 0.8162
2 0.5248 0.5392 0.5296 0.5118 0.8022 0.5401 0.5410 0.5433 0.8179
3 0.5235 0.5370 0.5322 0.5132 0.8030 0.5407 0.5395 0.5425 0.8182
4 0.5230 0.5354 0.5347 0.5152 0.8046 0.5406 0.5398 0.5439 0.8184
5 0.5231 0.5348 0.5350 0.5163 0.8055 0.5398 0.5394 0.5435 0.8187

Table 6: Expected LGD. Empty entries mean no loss observations.

average LGD in the asset pool.

Incremental VaR (IVaR) IVaR depends on the tranche’s thickness as
well as its share of the superportfolio notional. A thinner tranche has usually
higher risk contributions than a wider tranche. This is because a thin tranche
has a higher probability of full loss than a thick tranche. A tranche possess-
ing 5% of the superportfolio has maximum IVaR of 5% while a tranche with
10% superportfolio share has maximum IVaR of 10%.

Now, consider Table 7 showing IVaRs of cumulative loss. Obviously, the
results are similar to those with hazard rates above. The risk contributions
of the tranche are significantly lower in early periods but grow very quickly
and ultimately exceed those of our benchmark bonds in later periods. In
the base case IVaR of the 3% tranche is more than two times and of the 1%
tranche it is more than three times as high as of the bond. In scenario 5
tranche IVaR5 ratio of tranche and bond is almost four to one. Altogether,
we record the highest IVaR levels in scenarios where LGD is shifted or the
initial factor is lowered. This is the same result as with hazard rates. In
multivariate stress scenarios the tranches contribute almost completely (i.e.,
with their full notional) to the VaR of the superportfolio. By contrast, the
bond’s contribution is only 0.0270 in the worst scenario.

What does it mean when a tranche with 5% superportfolio notional has
an IVaR of 5% in t = 4 or t = 5 (compare scenario 6-8)? It simply states
that VaR increases by 5% when the tranche is added to the superportfolio.
This amounts to almost surely default of the tranche. To summarize, the
risk contribution of a CDO is lower than that of comparable bonds in early
periods, even for bad scenarios. Later on, however, the risk may increase
very quickly. In accordance with tranche hazard rates, this effect is even
more pronounced in very bad stress scenarios. The order of stress scenarios
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with increasing severity shows another fact. Both tranches contribute their
full notional already in scenario 6. By contrast, the bonds’ contributions
are still far lower. However, in scenario 7 and 8 bond IVaR increases further
while tranche IVaR has already reached its maximum. This underlines the
increased stress sensitivity of tranches in comparison with bonds.

t 0 1 2 3 4 5 6 7 8

Mezzanine Tranche (Width: 3%)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002
2 0.0017 0.0031 0.0027 0.0000 0.0029 0.0004 0.0006 0.0373 0.0272
3 0.0079 0.0201 0.0150 0.0015 0.0194 0.0089 0.0167 0.0498 0.0463
4 0.0133 0.0318 0.0268 0.0182 0.0333 0.0287 0.0432 0.0500 0.0497
5 0.0208 0.0378 0.0345 0.0400 0.0393 0.0379 0.0493 0.0500 0.0500

Mezzanine Tranche (Width: 1%)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004
2 0.0036 0.0076 0.0044 0.0001 0.0064 0.0016 0.0012 0.0473 0.0397
3 0.0119 0.0308 0.0235 0.0034 0.0291 0.0201 0.0344 0.0500 0.0488
4 0.0188 0.0387 0.0329 0.0383 0.0395 0.0385 0.0486 0.0500 0.0500
5 0.0259 0.0423 0.0387 0.0472 0.0431 0.0455 0.0497 0.0500 0.0500

Bond (5-year cumulative PD: 10.51%)

1 0.0046 0.0101 0.0017 0.0037 0.0077 0.0096 0.0103 0.0129 0.0220
2 0.0048 0.0090 0.0044 0.0057 0.0110 0.0083 0.0095 0.0140 0.0194
3 0.0052 0.0103 0.0058 0.0088 0.0126 0.0086 0.0114 0.0179 0.0196
4 0.0069 0.0108 0.0087 0.0107 0.0128 0.0110 0.0134 0.0221 0.0224
5 0.0086 0.0108 0.0119 0.0117 0.0142 0.0108 0.0167 0.0247 0.0242

Table 7: Incremental VaR of cumulative loss.

5 Conclusion

In this article, we showed the particular relevance of stress tests for portfo-
lios including CDOs. CDOs are more sensitive to systematic risk and thus
also more “stress sensitive”, i.e., their risk contribution rises at higher pace
than that of conventional bonds. Specifically, two key risk characteristics
of CDOs have been found. First, we showed that the growth of tranche
risk measures in later periods is significantly higher than with bonds in all
scenarios. This underlines the relevance of a dynamic risk analysis. Isolated
consideration of initially low tranche hazard rates is seriously misleading
owing to accelerated risk increase in later periods. The latter applies in
particular with buy-and-hold investments. Second, we found that the risk
measures of the CDO increase also more quickly under stress than those of
the bond. This emphasizes a clearly higher stress-sensitivity.

We explained why the tranche’s subordination is of major relevance for
the timing of the transition. We showed how the tranche term structure
directly translates into the evolution of VaR. In our simulations we found
the greatest VaR impact with the initial level of the factor processes as well
as with shifts in asset pool LGD. While the former is a very intuitive result,
the latter is not so immediate but nevertheless very important. Indeed, it is
of special interest currently as it establishes a connection between busting
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bubbles and senior tranche loss.

Appendix

A Default Threshold Calculation

The covariance matrix of (Ri1, . . . , Rit) is necessary to back out the default
thresholds cit. In the follwing we derive Formula 10.

Cov (Rit, Rit′) = E[Rit ·Rit′ ]− E[Rit]E[Rit′ ]

= ρσ2
t′−1∑

j=0

α
j+j+(t−t′)
1 E

[
W 2

t−j

]
+ ραt+t′

1 E
[
F 2

0

]
+ (1− ρ)1{t=t′}

= ρσ2
t′−1∑

j=0

α
2j+(t−t′)
1 + ραt+t′

1 + (1− ρ)1{t=t′}

= ρ
(
1− α2

1

) t′−1∑

j=0

α
2j+(t−t′)
1 + ραt+t′

1 + (1− ρ)1{t=t′}

= ρ




t′∑

j=0

α
2j+(t−t′)
1 −

t′∑

j=1

α
2j+(t−t′)
1


 + (1− ρ)1{t=t′}

= ρα
|t−t′|
1 + (1− ρ)1{t=t′}

(22)

Note that this requires the unconditional factor process, i.e., F0 ∼ N (0, 1).
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